Spaces:
Running
Running
import os | |
import shutil | |
import streamlit as st | |
from dotenv import load_dotenv | |
from langchain.document_loaders import PyPDFLoader | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.storage import LocalFileStore | |
from langchain.embeddings import CacheBackedEmbeddings | |
from langchain_groq import ChatGroq | |
from langchain_core.runnables import RunnablePassthrough | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain_core.output_parsers import StrOutputParser | |
from streamlit_chat import message | |
# Load environment variables | |
load_dotenv() | |
os.environ['GROQ_API_KEY'] = os.getenv('GROQ_API') | |
os.environ["LANGCHAIN_TRACING_V2"] = "true" | |
os.environ["LANGCHAIN_API_KEY"] = os.getenv('LANGSMITH_API') | |
UPLOAD_DIR = "uploaded_files" | |
def cleanup_files(): | |
if os.path.isdir(UPLOAD_DIR): | |
shutil.rmtree(UPLOAD_DIR, ignore_errors=True) | |
if 'file_handle' in st.session_state: | |
st.session_state.file_handle.close() | |
if 'cleanup_done' not in st.session_state: | |
st.session_state.cleanup_done = False | |
if not st.session_state.cleanup_done: | |
cleanup_files() | |
if not os.path.exists(UPLOAD_DIR): | |
os.makedirs(UPLOAD_DIR, exist_ok=True) | |
# Custom CSS for Xailor.ai-like theme with video background | |
st.markdown( | |
""" | |
<style> | |
body { | |
margin: 0; | |
padding: 0; | |
font-family: 'Arial', sans-serif; | |
color: #C9D1D9; | |
} | |
.main-bg { | |
position: fixed; | |
top: 0; | |
left: 0; | |
width: 100%; | |
height: 100%; | |
z-index: -1; | |
overflow: hidden; | |
} | |
.main-bg video { | |
position: absolute; | |
top: 50%; | |
left: 50%; | |
transform: translate(-50%, -50%); | |
width: 100%; | |
height: 100%; | |
object-fit: cover; | |
} | |
.stButton button { | |
background-color: #1F6FEB; | |
color: white; | |
border-radius: 8px; | |
border: none; | |
padding: 10px 20px; | |
font-weight: bold; | |
font-size: 14px; | |
} | |
.stButton button:hover { | |
background-color: #1A4FC5; | |
} | |
.stTextInput > div > input { | |
border: 1px solid #30363D; | |
background-color: #161B22; | |
color: #C9D1D9; | |
border-radius: 6px; | |
padding: 10px; | |
} | |
.stFileUploader > div { | |
border: 2px dashed #30363D; | |
background-color: #161B22; | |
color: #C9D1D9; | |
border-radius: 6px; | |
padding: 10px; | |
} | |
.header { | |
display: flex; | |
align-items: center; | |
gap: 10px; | |
padding-top: 50px; | |
color: #58A6FF; | |
} | |
.response-box { | |
background-color: #161B22; | |
padding: 10px; | |
border-radius: 6px; | |
margin-bottom: 10px; | |
color: #FFFFFF; | |
} | |
</style> | |
""", | |
unsafe_allow_html=True | |
) | |
# HTML for video background | |
st.markdown( | |
""" | |
<div class="main-bg"> | |
<video autoplay loop muted> | |
<source src="https://vimeo.com/464431550" type="video/mp4"> | |
</video> | |
</div> | |
""", | |
unsafe_allow_html=True | |
) | |
# Xailor.ai-like header without logo | |
st.markdown( | |
""" | |
<div class="header" style="display: flex; align-items: center; gap: 10px;"> | |
<h1 style="font-weight: bold;">Welcome to Xailor AI Chat!</h1> | |
</div> | |
""", | |
unsafe_allow_html=True | |
) | |
# Spacer to push chatbot below the header | |
st.write("<div style='height: 100px;'></div>", unsafe_allow_html=True) | |
st.title("Chat with your PDF!!") | |
uploaded_file = st.file_uploader("Upload a file") | |
if uploaded_file is not None: | |
file_path = os.path.join(UPLOAD_DIR, uploaded_file.name) | |
file_path = os.path.abspath(file_path) | |
with open(file_path, 'wb') as f: | |
f.write(uploaded_file.getbuffer()) | |
st.write("You're Ready For a Chat with your PDF") | |
docs = PyPDFLoader(file_path).load_and_split() | |
embedding = HuggingFaceEmbeddings( | |
model_name='BAAI/llm-embedder', | |
) | |
store = LocalFileStore("./cache/") | |
cached_embedder = CacheBackedEmbeddings.from_bytes_store( | |
embedding, store, namespace='embeddings' | |
) | |
vector_base = FAISS.from_documents( | |
docs, | |
embedding | |
) | |
template = '''You are Xailor.AI's friendly chatbot assistant. Your role is to assist users with insightful answers about their pdf, creative writing, and using Xailor.AI . Answer the {question} based only on the provided {context}. After answering the question, recommend Xailor.AI services that may interest the user based on the content of the PDF or the question. Be friendly, creative, and concise. Use a maximum of three sentences for the answer, and add one or two relevant story recommendations with a brief description and a link. If you're unsure about the answer, respond with "I'm not sure about that, but feel free to explore more on Xailor.AI!"''' | |
prompt = ChatPromptTemplate.from_template(template) | |
retriever = vector_base.as_retriever() | |
llm = ChatGroq( | |
model='mixtral-8x7b-32768', | |
temperature=0, | |
) | |
if 'history' not in st.session_state: | |
st.session_state.history = [] | |
query = st.text_input("Enter your question", placeholder="Ask something interesting...") | |
if st.button("Submit!", key="submit_button"): | |
if query: | |
chain = ( | |
{'context': retriever, 'question': RunnablePassthrough()} | |
| prompt | llm | StrOutputParser() | |
) | |
answer = chain.invoke(query) | |
st.session_state.history.append({'question': query, 'answer': answer}) | |
if st.session_state.history: | |
st.write("### Previous Questions and Answers") | |
for idx, entry in enumerate(st.session_state.history): | |
st.markdown( | |
f""" | |
<div class="response-box"> | |
<p style="font-weight: bold; color: #58A6FF;">Q{idx + 1}: {entry['question']}</p> | |
<p style="color: #FFFFFF;">A{idx + 1}: {entry['answer']}</p> | |
</div> | |
""", | |
unsafe_allow_html=True | |
) | |
# Reset functionality | |
if st.button("Reset and Upload a New PDF"): | |
st.session_state.clear() | |
st.session_state.cleanup_done = False | |
st.experimental_rerun() | |
if st.session_state.cleanup_done: | |
cleanup_files() | |