isLinXu
update app
e2881a8
raw
history blame
12 kB
import os
os.system("pip install 'git+https://github.com/facebookresearch/detectron2.git'")
import PIL.Image
import gradio as gr
import torch
import numpy as np
import cv2
from detectron2.config import get_cfg
from detectron2.data.detection_utils import read_image
import atexit
import bisect
import multiprocessing as mp
from collections import deque
import cv2
import torch
from detectron2.data import MetadataCatalog
from detectron2.engine.defaults import DefaultPredictor
from detectron2.utils.video_visualizer import VideoVisualizer
from detectron2.utils.visualizer import ColorMode, Visualizer
import warnings
warnings.filterwarnings("ignore")
class VisualizationDemo:
def __init__(self, cfg, device, instance_mode=ColorMode.IMAGE, parallel=False):
"""
Args:
cfg (CfgNode):
instance_mode (ColorMode):
parallel (bool): whether to run the model in different processes from visualization.
Useful since the visualization logic can be slow.
"""
self.metadata = MetadataCatalog.get(
cfg.DATASETS.TEST[0] if len(cfg.DATASETS.TEST) else "__unused"
)
self.cpu_device = torch.device("cpu")
self.instance_mode = instance_mode
self.parallel = parallel
if parallel:
num_gpu = torch.cuda.device_count()
print("num_gpu: ", num_gpu)
self.predictor = AsyncPredictor(cfg, num_gpus=num_gpu)
else:
cfg.defrost()
# print("cfg: ", cfg)
cfg.MODEL.DEVICE = device
self.predictor = DefaultPredictor(cfg)
def run_on_image(self, image):
"""
Args:
image (np.ndarray): an image of shape (H, W, C) (in BGR order).
This is the format used by OpenCV.
Returns:
predictions (dict): the output of the model.
vis_output (VisImage): the visualized image output.
"""
vis_output = None
predictions = self.predictor(image)
# Convert image from OpenCV BGR format to Matplotlib RGB format.
image = image[:, :, ::-1]
visualizer = Visualizer(image, self.metadata, instance_mode=self.instance_mode)
if "panoptic_seg" in predictions:
panoptic_seg, segments_info = predictions["panoptic_seg"]
vis_output = visualizer.draw_panoptic_seg_predictions(
panoptic_seg.to(self.cpu_device), segments_info
)
else:
if "sem_seg" in predictions:
vis_output = visualizer.draw_sem_seg(
predictions["sem_seg"].argmax(dim=0).to(self.cpu_device)
)
if "instances" in predictions:
instances = predictions["instances"].to(self.cpu_device)
vis_output = visualizer.draw_instance_predictions(predictions=instances)
return predictions, vis_output
def _frame_from_video(self, video):
while video.isOpened():
success, frame = video.read()
if success:
yield frame
else:
break
def run_on_video(self, video):
"""
Visualizes predictions on frames of the input video.
Args:
video (cv2.VideoCapture): a :class:`VideoCapture` object, whose source can be
either a webcam or a video file.
Yields:
ndarray: BGR visualizations of each video frame.
"""
video_visualizer = VideoVisualizer(self.metadata, self.instance_mode)
def process_predictions(frame, predictions):
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
if "panoptic_seg" in predictions:
panoptic_seg, segments_info = predictions["panoptic_seg"]
vis_frame = video_visualizer.draw_panoptic_seg_predictions(
frame, panoptic_seg.to(self.cpu_device), segments_info
)
elif "instances" in predictions:
predictions = predictions["instances"].to(self.cpu_device)
vis_frame = video_visualizer.draw_instance_predictions(frame, predictions)
elif "sem_seg" in predictions:
vis_frame = video_visualizer.draw_sem_seg(
frame, predictions["sem_seg"].argmax(dim=0).to(self.cpu_device)
)
# Converts Matplotlib RGB format to OpenCV BGR format
vis_frame = cv2.cvtColor(vis_frame.get_image(), cv2.COLOR_RGB2BGR)
return vis_frame
frame_gen = self._frame_from_video(video)
if self.parallel:
buffer_size = self.predictor.default_buffer_size
frame_data = deque()
for cnt, frame in enumerate(frame_gen):
frame_data.append(frame)
self.predictor.put(frame)
if cnt >= buffer_size:
frame = frame_data.popleft()
predictions = self.predictor.get()
yield process_predictions(frame, predictions)
while len(frame_data):
frame = frame_data.popleft()
predictions = self.predictor.get()
yield process_predictions(frame, predictions)
else:
for frame in frame_gen:
yield process_predictions(frame, self.predictor(frame))
class AsyncPredictor:
"""
A predictor that runs the model asynchronously, possibly on >1 GPUs.
Because rendering the visualization takes considerably amount of time,
this helps improve throughput a little bit when rendering videos.
"""
class _StopToken:
pass
class _PredictWorker(mp.Process):
def __init__(self, cfg, task_queue, result_queue):
self.cfg = cfg
self.task_queue = task_queue
self.result_queue = result_queue
super().__init__()
def run(self):
predictor = DefaultPredictor(self.cfg)
while True:
task = self.task_queue.get()
if isinstance(task, AsyncPredictor._StopToken):
break
idx, data = task
result = predictor(data)
self.result_queue.put((idx, result))
def __init__(self, cfg, num_gpus: int = 1):
"""
Args:
cfg (CfgNode):
num_gpus (int): if 0, will run on CPU
"""
num_workers = max(num_gpus, 1)
self.task_queue = mp.Queue(maxsize=num_workers * 3)
self.result_queue = mp.Queue(maxsize=num_workers * 3)
self.procs = []
for gpuid in range(max(num_gpus, 1)):
cfg = cfg.clone()
cfg.defrost()
cfg.MODEL.DEVICE = "cuda:{}".format(gpuid) if num_gpus > 0 else "cpu"
self.procs.append(
AsyncPredictor._PredictWorker(cfg, self.task_queue, self.result_queue)
)
self.put_idx = 0
self.get_idx = 0
self.result_rank = []
self.result_data = []
for p in self.procs:
p.start()
atexit.register(self.shutdown)
def put(self, image):
self.put_idx += 1
self.task_queue.put((self.put_idx, image))
def get(self):
self.get_idx += 1 # the index needed for this request
if len(self.result_rank) and self.result_rank[0] == self.get_idx:
res = self.result_data[0]
del self.result_data[0], self.result_rank[0]
return res
while True:
# make sure the results are returned in the correct order
idx, res = self.result_queue.get()
if idx == self.get_idx:
return res
insert = bisect.bisect(self.result_rank, idx)
self.result_rank.insert(insert, idx)
self.result_data.insert(insert, res)
def __len__(self):
return self.put_idx - self.get_idx
def __call__(self, image):
self.put(image)
return self.get()
def shutdown(self):
for _ in self.procs:
self.task_queue.put(AsyncPredictor._StopToken())
@property
def default_buffer_size(self):
return len(self.procs) * 5
detectron2_model_list = {
"COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x":{
"config_file": "configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml",
"ckpts": "detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl"
},
}
# def dtectron2_instance_inference(image, config_file, ckpts, device):
# cfg = get_cfg()
# cfg.merge_from_file(config_file)
# cfg.MODEL.WEIGHTS = ckpts
# cfg.MODEL.DEVICE = "cpu"
# cfg.output = "output_img.jpg"
# visualization_demo = VisualizationDemo(cfg, device=device)
# if image:
# intput_path = "intput_img.jpg"
# image.save(intput_path)
# image = read_image(intput_path, format="BGR")
# predictions, vis_output = visualization_demo.run_on_image(image)
# output_image = PIL.Image.fromarray(vis_output.get_image())
# # print("predictions: ", predictions)
# return output_image
def dtectron2_instance_inference(image, input_model_name, device):
cfg = get_cfg()
config_file = detectron2_model_list[input_model_name]["config_file"]
ckpts = detectron2_model_list[input_model_name]["ckpts"]
cfg.merge_from_file(config_file)
cfg.MODEL.WEIGHTS = ckpts
cfg.MODEL.DEVICE = "cpu"
cfg.output = "output_img.jpg"
visualization_demo = VisualizationDemo(cfg, device=device)
if image:
intput_path = "intput_img.jpg"
image.save(intput_path)
image = read_image(intput_path, format="BGR")
predictions, vis_output = visualization_demo.run_on_image(image)
output_image = PIL.Image.fromarray(vis_output.get_image())
# print("predictions: ", predictions)
return output_image
def download_test_img():
# Images
torch.hub.download_url_to_file(
'https://user-images.githubusercontent.com/59380685/268517006-d8d4d3b3-964a-4f4d-8458-18c7eb75a4f2.jpg',
'000000502136.jpg')
if __name__ == '__main__':
input_image = gr.inputs.Image(type='pil', label='Input Image')
input_model_name = gr.inputs.Dropdown(list(detectron2_model_list.keys()), label="Model Name", default="COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x")
input_device = gr.inputs.Dropdown(["cpu", "cuda"], label="Devices", default="cpu")
output_image = gr.outputs.Image(type='pil', label='Output Image')
output_predictions = gr.outputs.Textbox(type='text', label='Output Predictions')
title = "Detectron2 web demo"
description = "<div align='center'><img src='https://raw.githubusercontent.com/facebookresearch/detectron2/8c4a333ceb8df05348759443d0206302485890e0/.github/Detectron2-Logo-Horz.svg' width='450''/><div>" \
"<p style='text-align: center'><a href='https://github.com/facebookresearch/detectron2'>Detectron2</a> Detectron2 是 Facebook AI Research 的下一代库,提供最先进的检测和分割算法。它是Detectron 和maskrcnn-benchmark的后继者 。它支持 Facebook 中的许多计算机视觉研究项目和生产应用。" \
"Detectron2 is a platform for object detection, segmentation and other visual recognition tasks..</p>"
article = "<p style='text-align: center'><a href='https://github.com/facebookresearch/detectron2'>Detectron2</a></p>" \
"<p style='text-align: center'><a href='https://github.com/facebookresearch/detectron2'>gradio build by gatilin</a></a></p>"
download_test_img()
examples = [["000000502136.jpg", "COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x", "cpu"]]
gr.Interface(fn=dtectron2_instance_inference,
inputs=[input_image, input_model_name, input_device],
outputs=output_image,examples=examples,
title=title, description=description, article=article).launch()