Spaces:
Sleeping
Sleeping
geekyrakshit
commited on
Commit
·
cce1c58
1
Parent(s):
0d77bb1
add: NVEmbed2Retriever
Browse files- docs/retreival/nv_embed_2.md +3 -0
- medrag_multi_modal/retrieval/__init__.py +2 -0
- medrag_multi_modal/retrieval/nv_embed_2.py +278 -0
- mkdocs.yml +1 -0
- pyproject.toml +6 -0
docs/retreival/nv_embed_2.md
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
# NV-Embed-v2 Retrieval
|
2 |
+
|
3 |
+
::: medrag_multi_modal.retrieval.nv_embed_2
|
medrag_multi_modal/retrieval/__init__.py
CHANGED
@@ -3,6 +3,7 @@ from .colpali_retrieval import CalPaliRetriever
|
|
3 |
from .common import SimilarityMetric
|
4 |
from .contriever_retrieval import ContrieverRetriever
|
5 |
from .medcpt_retrieval import MedCPTRetriever
|
|
|
6 |
|
7 |
__all__ = [
|
8 |
"CalPaliRetriever",
|
@@ -10,4 +11,5 @@ __all__ = [
|
|
10 |
"ContrieverRetriever",
|
11 |
"SimilarityMetric",
|
12 |
"MedCPTRetriever",
|
|
|
13 |
]
|
|
|
3 |
from .common import SimilarityMetric
|
4 |
from .contriever_retrieval import ContrieverRetriever
|
5 |
from .medcpt_retrieval import MedCPTRetriever
|
6 |
+
from .nv_embed_2 import NVEmbed2Retriever
|
7 |
|
8 |
__all__ = [
|
9 |
"CalPaliRetriever",
|
|
|
11 |
"ContrieverRetriever",
|
12 |
"SimilarityMetric",
|
13 |
"MedCPTRetriever",
|
14 |
+
"NVEmbed2Retriever",
|
15 |
]
|
medrag_multi_modal/retrieval/nv_embed_2.py
ADDED
@@ -0,0 +1,278 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import Optional
|
3 |
+
|
4 |
+
import safetensors
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import weave
|
8 |
+
from sentence_transformers import SentenceTransformer
|
9 |
+
|
10 |
+
from ..utils import get_torch_backend, get_wandb_artifact
|
11 |
+
from .common import SimilarityMetric, argsort_scores, save_vector_index
|
12 |
+
|
13 |
+
|
14 |
+
class NVEmbed2Retriever(weave.Model):
|
15 |
+
"""
|
16 |
+
`NVEmbed2Retriever` is a class for retrieving relevant text chunks from a dataset using the
|
17 |
+
[NV-Embed-v2](https://huggingface.co/nvidia/NV-Embed-v2) model.
|
18 |
+
|
19 |
+
This class leverages the SentenceTransformer model to encode text chunks into vector representations and
|
20 |
+
performs similarity-based retrieval. It supports indexing a dataset of text chunks, saving the vector index,
|
21 |
+
and retrieving the most relevant chunks for a given query.
|
22 |
+
|
23 |
+
Args:
|
24 |
+
model_name (str): The name of the pre-trained model to use for encoding.
|
25 |
+
vector_index (Optional[torch.Tensor]): The tensor containing the vector representations of the indexed chunks.
|
26 |
+
chunk_dataset (Optional[list[dict]]): The dataset of text chunks to be indexed.
|
27 |
+
"""
|
28 |
+
|
29 |
+
model_name: str
|
30 |
+
_chunk_dataset: Optional[list[dict]]
|
31 |
+
_model: SentenceTransformer
|
32 |
+
_vector_index: Optional[torch.Tensor]
|
33 |
+
|
34 |
+
def __init__(
|
35 |
+
self,
|
36 |
+
model_name: str = "sentence-transformers/nvembed2-nli-v1",
|
37 |
+
vector_index: Optional[torch.Tensor] = None,
|
38 |
+
chunk_dataset: Optional[list[dict]] = None,
|
39 |
+
):
|
40 |
+
super().__init__(model_name=model_name)
|
41 |
+
self._model = SentenceTransformer(
|
42 |
+
self.model_name,
|
43 |
+
trust_remote_code=True,
|
44 |
+
model_kwargs={"torch_dtype": torch.float16},
|
45 |
+
device=get_torch_backend(),
|
46 |
+
)
|
47 |
+
self._model.max_seq_length = 32768
|
48 |
+
self._model.tokenizer.padding_side = "right"
|
49 |
+
self._vector_index = vector_index
|
50 |
+
self._chunk_dataset = chunk_dataset
|
51 |
+
|
52 |
+
def add_eos(self, input_examples):
|
53 |
+
input_examples = [
|
54 |
+
input_example + self._model.tokenizer.eos_token
|
55 |
+
for input_example in input_examples
|
56 |
+
]
|
57 |
+
return input_examples
|
58 |
+
|
59 |
+
def index(self, chunk_dataset_name: str, index_name: Optional[str] = None):
|
60 |
+
"""
|
61 |
+
Indexes a dataset of text chunks and optionally saves the vector index to a file.
|
62 |
+
|
63 |
+
This method retrieves a dataset of text chunks from a Weave reference, encodes the
|
64 |
+
text chunks into vector representations using the NV-Embed-v2 model, and stores the
|
65 |
+
resulting vector index. If an index name is provided, the vector index is saved to
|
66 |
+
a file in the safetensors format. Additionally, if a Weave run is active, the vector
|
67 |
+
index file is logged as an artifact to Weave.
|
68 |
+
|
69 |
+
!!! example "Example Usage"
|
70 |
+
```python
|
71 |
+
import weave
|
72 |
+
from dotenv import load_dotenv
|
73 |
+
|
74 |
+
import wandb
|
75 |
+
from medrag_multi_modal.retrieval import NVEmbed2Retriever
|
76 |
+
|
77 |
+
load_dotenv()
|
78 |
+
weave.init(project_name="ml-colabs/medrag-multi-modal")
|
79 |
+
wandb.init(project="medrag-multi-modal", entity="ml-colabs", job_type="nvembed2-index")
|
80 |
+
retriever = NVEmbed2Retriever(model_name="nvidia/NV-Embed-v2")
|
81 |
+
retriever.index(
|
82 |
+
chunk_dataset_name="grays-anatomy-chunks:v0",
|
83 |
+
index_name="grays-anatomy-nvembed2",
|
84 |
+
)
|
85 |
+
```
|
86 |
+
|
87 |
+
Args:
|
88 |
+
chunk_dataset_name (str): The name of the Weave dataset containing the text chunks
|
89 |
+
to be indexed.
|
90 |
+
index_name (Optional[str]): The name of the index artifact to be saved. If provided,
|
91 |
+
the vector index is saved to a file and logged as an artifact to Weave.
|
92 |
+
"""
|
93 |
+
self._chunk_dataset = weave.ref(chunk_dataset_name).get().rows
|
94 |
+
corpus = [row["text"] for row in self._chunk_dataset]
|
95 |
+
self._vector_index = self._model.encode(
|
96 |
+
self.add_eos(corpus), batch_size=len(corpus), normalize_embeddings=True
|
97 |
+
)
|
98 |
+
with torch.no_grad():
|
99 |
+
if index_name:
|
100 |
+
save_vector_index(
|
101 |
+
torch.from_numpy(self._vector_index),
|
102 |
+
"nvembed2-index",
|
103 |
+
index_name,
|
104 |
+
{"model_name": self.model_name},
|
105 |
+
)
|
106 |
+
|
107 |
+
@classmethod
|
108 |
+
def from_wandb_artifact(cls, chunk_dataset_name: str, index_artifact_address: str):
|
109 |
+
"""
|
110 |
+
Creates an instance of the class from a Weave artifact.
|
111 |
+
|
112 |
+
This method retrieves a vector index and metadata from a Weave artifact stored in
|
113 |
+
Weights & Biases (wandb). It also retrieves a dataset of text chunks from a Weave
|
114 |
+
reference. The vector index is loaded from a safetensors file and moved to the
|
115 |
+
appropriate device (CPU or GPU). The text chunks are converted into a list of
|
116 |
+
dictionaries. The method then returns an instance of the class initialized with
|
117 |
+
the retrieved model name, vector index, and chunk dataset.
|
118 |
+
|
119 |
+
!!! example "Example Usage"
|
120 |
+
```python
|
121 |
+
import weave
|
122 |
+
from dotenv import load_dotenv
|
123 |
+
|
124 |
+
import wandb
|
125 |
+
from medrag_multi_modal.retrieval import NVEmbed2Retriever
|
126 |
+
|
127 |
+
load_dotenv()
|
128 |
+
weave.init(project_name="ml-colabs/medrag-multi-modal")
|
129 |
+
retriever = NVEmbed2Retriever(model_name="nvidia/NV-Embed-v2")
|
130 |
+
retriever.index(
|
131 |
+
chunk_dataset_name="grays-anatomy-chunks:v0",
|
132 |
+
index_name="grays-anatomy-nvembed2",
|
133 |
+
)
|
134 |
+
retriever = NVEmbed2Retriever.from_wandb_artifact(
|
135 |
+
chunk_dataset_name="grays-anatomy-chunks:v0",
|
136 |
+
index_artifact_address="ml-colabs/medrag-multi-modal/grays-anatomy-nvembed2:v0",
|
137 |
+
)
|
138 |
+
```
|
139 |
+
|
140 |
+
Args:
|
141 |
+
chunk_dataset_name (str): The name of the Weave dataset containing the text chunks.
|
142 |
+
index_artifact_address (str): The address of the Weave artifact containing the
|
143 |
+
vector index.
|
144 |
+
|
145 |
+
Returns:
|
146 |
+
An instance of the class initialized with the retrieved model name, vector index,
|
147 |
+
and chunk dataset.
|
148 |
+
"""
|
149 |
+
artifact_dir, metadata = get_wandb_artifact(
|
150 |
+
index_artifact_address, "nvembed2-index", get_metadata=True
|
151 |
+
)
|
152 |
+
with safetensors.torch.safe_open(
|
153 |
+
os.path.join(artifact_dir, "vector_index.safetensors"), framework="pt"
|
154 |
+
) as f:
|
155 |
+
vector_index = f.get_tensor("vector_index")
|
156 |
+
device = torch.device(get_torch_backend())
|
157 |
+
vector_index = vector_index.to(device)
|
158 |
+
chunk_dataset = [dict(row) for row in weave.ref(chunk_dataset_name).get().rows]
|
159 |
+
return cls(
|
160 |
+
model_name=metadata["model_name"],
|
161 |
+
vector_index=vector_index,
|
162 |
+
chunk_dataset=chunk_dataset,
|
163 |
+
)
|
164 |
+
|
165 |
+
@weave.op()
|
166 |
+
def retrieve(
|
167 |
+
self,
|
168 |
+
query: list[str],
|
169 |
+
top_k: int = 2,
|
170 |
+
metric: SimilarityMetric = SimilarityMetric.COSINE,
|
171 |
+
):
|
172 |
+
"""
|
173 |
+
Retrieves the top-k most relevant chunks for a given query using the specified similarity metric.
|
174 |
+
|
175 |
+
This method encodes the input query into an embedding and computes similarity scores between
|
176 |
+
the query embedding and the precomputed vector index. The similarity metric can be either
|
177 |
+
cosine similarity or Euclidean distance. The top-k chunks with the highest similarity scores
|
178 |
+
are returned as a list of dictionaries, each containing a chunk and its corresponding score.
|
179 |
+
|
180 |
+
!!! example "Example Usage"
|
181 |
+
```python
|
182 |
+
import weave
|
183 |
+
from dotenv import load_dotenv
|
184 |
+
|
185 |
+
import wandb
|
186 |
+
from medrag_multi_modal.retrieval import NVEmbed2Retriever
|
187 |
+
|
188 |
+
load_dotenv()
|
189 |
+
weave.init(project_name="ml-colabs/medrag-multi-modal")
|
190 |
+
retriever = NVEmbed2Retriever(model_name="nvidia/NV-Embed-v2")
|
191 |
+
retriever.index(
|
192 |
+
chunk_dataset_name="grays-anatomy-chunks:v0",
|
193 |
+
index_name="grays-anatomy-nvembed2",
|
194 |
+
)
|
195 |
+
retriever = NVEmbed2Retriever.from_wandb_artifact(
|
196 |
+
chunk_dataset_name="grays-anatomy-chunks:v0",
|
197 |
+
index_artifact_address="ml-colabs/medrag-multi-modal/grays-anatomy-nvembed2:v0",
|
198 |
+
)
|
199 |
+
```
|
200 |
+
|
201 |
+
Args:
|
202 |
+
query (list[str]): The input query strings to search for relevant chunks.
|
203 |
+
top_k (int, optional): The number of top relevant chunks to retrieve.
|
204 |
+
metric (SimilarityMetric, optional): The similarity metric to use for scoring.
|
205 |
+
|
206 |
+
Returns:
|
207 |
+
list: A list of dictionaries, each containing a retrieved chunk and its relevance score.
|
208 |
+
"""
|
209 |
+
device = torch.device(get_torch_backend())
|
210 |
+
with torch.no_grad():
|
211 |
+
query_embedding = self._model.encode(
|
212 |
+
self.add_eos(query), normalize_embeddings=True
|
213 |
+
)
|
214 |
+
query_embedding = torch.from_numpy(query_embedding).to(device)
|
215 |
+
if metric == SimilarityMetric.EUCLIDEAN:
|
216 |
+
scores = torch.squeeze(query_embedding @ self._vector_index.T)
|
217 |
+
else:
|
218 |
+
scores = F.cosine_similarity(query_embedding, self._vector_index)
|
219 |
+
scores = scores.cpu().numpy().tolist()
|
220 |
+
scores = argsort_scores(scores, descending=True)[:top_k]
|
221 |
+
retrieved_chunks = []
|
222 |
+
for score in scores:
|
223 |
+
retrieved_chunks.append(
|
224 |
+
{
|
225 |
+
"chunk": self._chunk_dataset[score["original_index"]],
|
226 |
+
"score": score["item"],
|
227 |
+
}
|
228 |
+
)
|
229 |
+
return retrieved_chunks
|
230 |
+
|
231 |
+
@weave.op()
|
232 |
+
def predict(
|
233 |
+
self,
|
234 |
+
query: str,
|
235 |
+
top_k: int = 2,
|
236 |
+
metric: SimilarityMetric = SimilarityMetric.COSINE,
|
237 |
+
):
|
238 |
+
"""
|
239 |
+
Predicts the top-k most relevant chunks for a given query using the specified similarity metric.
|
240 |
+
|
241 |
+
This method formats the input query string by prepending an instruction prompt and then calls the
|
242 |
+
`retrieve` method to get the most relevant chunks. The similarity metric can be either cosine similarity
|
243 |
+
or Euclidean distance. The top-k chunks with the highest similarity scores are returned.
|
244 |
+
|
245 |
+
!!! example "Example Usage"
|
246 |
+
```python
|
247 |
+
import weave
|
248 |
+
from dotenv import load_dotenv
|
249 |
+
|
250 |
+
import wandb
|
251 |
+
from medrag_multi_modal.retrieval import NVEmbed2Retriever
|
252 |
+
|
253 |
+
load_dotenv()
|
254 |
+
weave.init(project_name="ml-colabs/medrag-multi-modal")
|
255 |
+
retriever = NVEmbed2Retriever(model_name="nvidia/NV-Embed-v2")
|
256 |
+
retriever.index(
|
257 |
+
chunk_dataset_name="grays-anatomy-chunks:v0",
|
258 |
+
index_name="grays-anatomy-nvembed2",
|
259 |
+
)
|
260 |
+
retriever = NVEmbed2Retriever.from_wandb_artifact(
|
261 |
+
chunk_dataset_name="grays-anatomy-chunks:v0",
|
262 |
+
index_artifact_address="ml-colabs/medrag-multi-modal/grays-anatomy-nvembed2:v0",
|
263 |
+
)
|
264 |
+
retriever.predict(query="What are Ribosomes?")
|
265 |
+
```
|
266 |
+
|
267 |
+
Args:
|
268 |
+
query (str): The input query string to search for relevant chunks.
|
269 |
+
top_k (int, optional): The number of top relevant chunks to retrieve.
|
270 |
+
metric (SimilarityMetric, optional): The similarity metric to use for scoring.
|
271 |
+
|
272 |
+
Returns:
|
273 |
+
list: A list of dictionaries, each containing a retrieved chunk and its relevance score.
|
274 |
+
"""
|
275 |
+
query = [
|
276 |
+
f"Instruct: Given a question, retrieve passages that answer the question\nQuery: {query}"
|
277 |
+
]
|
278 |
+
return self.retrieve(query, top_k, metric)
|
mkdocs.yml
CHANGED
@@ -82,5 +82,6 @@ nav:
|
|
82 |
- ColPali: 'retreival/colpali.md'
|
83 |
- Contriever: 'retreival/contriever.md'
|
84 |
- MedCPT: 'retreival/medcpt.md'
|
|
|
85 |
|
86 |
repo_url: https://github.com/soumik12345/medrag-multi-modal
|
|
|
82 |
- ColPali: 'retreival/colpali.md'
|
83 |
- Contriever: 'retreival/contriever.md'
|
84 |
- MedCPT: 'retreival/medcpt.md'
|
85 |
+
- NV-Embed-v2: 'retreival/nv_embed_2.md'
|
86 |
|
87 |
repo_url: https://github.com/soumik12345/medrag-multi-modal
|
pyproject.toml
CHANGED
@@ -7,6 +7,8 @@ requires-python = ">=3.10"
|
|
7 |
dependencies = [
|
8 |
"adapters>=1.0.0",
|
9 |
"bm25s[full]>=0.2.2",
|
|
|
|
|
10 |
"firerequests>=0.0.7",
|
11 |
"jax[cpu]>=0.4.34",
|
12 |
"pdf2image>=1.17.0",
|
@@ -35,12 +37,15 @@ dependencies = [
|
|
35 |
"pdfplumber>=0.11.4",
|
36 |
"semchunk>=2.2.0",
|
37 |
"tiktoken>=0.8.0",
|
|
|
38 |
]
|
39 |
|
40 |
[project.optional-dependencies]
|
41 |
core = [
|
42 |
"adapters>=1.0.0",
|
43 |
"bm25s[full]>=0.2.2",
|
|
|
|
|
44 |
"firerequests>=0.0.7",
|
45 |
"jax[cpu]>=0.4.34",
|
46 |
"marker-pdf>=0.2.17",
|
@@ -55,6 +60,7 @@ core = [
|
|
55 |
"tiktoken>=0.8.0",
|
56 |
"torch>=2.4.1",
|
57 |
"weave>=0.51.14",
|
|
|
58 |
]
|
59 |
|
60 |
dev = ["pytest>=8.3.3", "isort>=5.13.2", "black>=24.10.0", "ruff>=0.6.9"]
|
|
|
7 |
dependencies = [
|
8 |
"adapters>=1.0.0",
|
9 |
"bm25s[full]>=0.2.2",
|
10 |
+
"datasets>=3.0.1",
|
11 |
+
"einops>=0.8.0",
|
12 |
"firerequests>=0.0.7",
|
13 |
"jax[cpu]>=0.4.34",
|
14 |
"pdf2image>=1.17.0",
|
|
|
37 |
"pdfplumber>=0.11.4",
|
38 |
"semchunk>=2.2.0",
|
39 |
"tiktoken>=0.8.0",
|
40 |
+
"sentence-transformers>=3.2.0",
|
41 |
]
|
42 |
|
43 |
[project.optional-dependencies]
|
44 |
core = [
|
45 |
"adapters>=1.0.0",
|
46 |
"bm25s[full]>=0.2.2",
|
47 |
+
"datasets>=3.0.1",
|
48 |
+
"einops>=0.8.0",
|
49 |
"firerequests>=0.0.7",
|
50 |
"jax[cpu]>=0.4.34",
|
51 |
"marker-pdf>=0.2.17",
|
|
|
60 |
"tiktoken>=0.8.0",
|
61 |
"torch>=2.4.1",
|
62 |
"weave>=0.51.14",
|
63 |
+
"sentence-transformers>=3.2.0",
|
64 |
]
|
65 |
|
66 |
dev = ["pytest>=8.3.3", "isort>=5.13.2", "black>=24.10.0", "ruff>=0.6.9"]
|