Spaces:
Build error
Build error
File size: 28,784 Bytes
d7a991a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 |
# Copyright (c) OpenMMLab. All rights reserved.
import cv2
import numpy as np
from mmpose.core.post_processing import (affine_transform, fliplr_joints,
get_affine_transform, get_warp_matrix,
warp_affine_joints)
from mmpose.datasets.builder import PIPELINES
@PIPELINES.register_module()
class TopDownRandomFlip:
"""Data augmentation with random image flip.
Required keys: 'img', 'joints_3d', 'joints_3d_visible', 'center' and
'ann_info'.
Modifies key: 'img', 'joints_3d', 'joints_3d_visible', 'center' and
'flipped'.
Args:
flip (bool): Option to perform random flip.
flip_prob (float): Probability of flip.
"""
def __init__(self, flip_prob=0.5):
self.flip_prob = flip_prob
def __call__(self, results):
"""Perform data augmentation with random image flip."""
img = results['img']
joints_3d = results['joints_3d']
joints_3d_visible = results['joints_3d_visible']
center = results['center']
# A flag indicating whether the image is flipped,
# which can be used by child class.
flipped = False
if np.random.rand() <= self.flip_prob:
flipped = True
if not isinstance(img, list):
img = img[:, ::-1, :]
else:
img = [i[:, ::-1, :] for i in img]
if not isinstance(img, list):
joints_3d, joints_3d_visible = fliplr_joints(
joints_3d, joints_3d_visible, img.shape[1],
results['ann_info']['flip_pairs'])
center[0] = img.shape[1] - center[0] - 1
else:
joints_3d, joints_3d_visible = fliplr_joints(
joints_3d, joints_3d_visible, img[0].shape[1],
results['ann_info']['flip_pairs'])
center[0] = img[0].shape[1] - center[0] - 1
results['img'] = img
results['joints_3d'] = joints_3d
results['joints_3d_visible'] = joints_3d_visible
results['center'] = center
results['flipped'] = flipped
return results
@PIPELINES.register_module()
class TopDownHalfBodyTransform:
"""Data augmentation with half-body transform. Keep only the upper body or
the lower body at random.
Required keys: 'joints_3d', 'joints_3d_visible', and 'ann_info'.
Modifies key: 'scale' and 'center'.
Args:
num_joints_half_body (int): Threshold of performing
half-body transform. If the body has fewer number
of joints (< num_joints_half_body), ignore this step.
prob_half_body (float): Probability of half-body transform.
"""
def __init__(self, num_joints_half_body=8, prob_half_body=0.3):
self.num_joints_half_body = num_joints_half_body
self.prob_half_body = prob_half_body
@staticmethod
def half_body_transform(cfg, joints_3d, joints_3d_visible):
"""Get center&scale for half-body transform."""
upper_joints = []
lower_joints = []
for joint_id in range(cfg['num_joints']):
if joints_3d_visible[joint_id][0] > 0:
if joint_id in cfg['upper_body_ids']:
upper_joints.append(joints_3d[joint_id])
else:
lower_joints.append(joints_3d[joint_id])
if np.random.randn() < 0.5 and len(upper_joints) > 2:
selected_joints = upper_joints
elif len(lower_joints) > 2:
selected_joints = lower_joints
else:
selected_joints = upper_joints
if len(selected_joints) < 2:
return None, None
selected_joints = np.array(selected_joints, dtype=np.float32)
center = selected_joints.mean(axis=0)[:2]
left_top = np.amin(selected_joints, axis=0)
right_bottom = np.amax(selected_joints, axis=0)
w = right_bottom[0] - left_top[0]
h = right_bottom[1] - left_top[1]
aspect_ratio = cfg['image_size'][0] / cfg['image_size'][1]
if w > aspect_ratio * h:
h = w * 1.0 / aspect_ratio
elif w < aspect_ratio * h:
w = h * aspect_ratio
scale = np.array([w / 200.0, h / 200.0], dtype=np.float32)
scale = scale * 1.5
return center, scale
def __call__(self, results):
"""Perform data augmentation with half-body transform."""
joints_3d = results['joints_3d']
joints_3d_visible = results['joints_3d_visible']
if (np.sum(joints_3d_visible[:, 0]) > self.num_joints_half_body
and np.random.rand() < self.prob_half_body):
c_half_body, s_half_body = self.half_body_transform(
results['ann_info'], joints_3d, joints_3d_visible)
if c_half_body is not None and s_half_body is not None:
results['center'] = c_half_body
results['scale'] = s_half_body
return results
@PIPELINES.register_module()
class TopDownGetRandomScaleRotation:
"""Data augmentation with random scaling & rotating.
Required key: 'scale'.
Modifies key: 'scale' and 'rotation'.
Args:
rot_factor (int): Rotating to ``[-2*rot_factor, 2*rot_factor]``.
scale_factor (float): Scaling to ``[1-scale_factor, 1+scale_factor]``.
rot_prob (float): Probability of random rotation.
"""
def __init__(self, rot_factor=40, scale_factor=0.5, rot_prob=0.6):
self.rot_factor = rot_factor
self.scale_factor = scale_factor
self.rot_prob = rot_prob
def __call__(self, results):
"""Perform data augmentation with random scaling & rotating."""
s = results['scale']
sf = self.scale_factor
rf = self.rot_factor
s_factor = np.clip(np.random.randn() * sf + 1, 1 - sf, 1 + sf)
s = s * s_factor
r_factor = np.clip(np.random.randn() * rf, -rf * 2, rf * 2)
r = r_factor if np.random.rand() <= self.rot_prob else 0
results['scale'] = s
results['rotation'] = r
return results
@PIPELINES.register_module()
class TopDownAffine:
"""Affine transform the image to make input.
Required keys:'img', 'joints_3d', 'joints_3d_visible', 'ann_info','scale',
'rotation' and 'center'.
Modified keys:'img', 'joints_3d', and 'joints_3d_visible'.
Args:
use_udp (bool): To use unbiased data processing.
Paper ref: Huang et al. The Devil is in the Details: Delving into
Unbiased Data Processing for Human Pose Estimation (CVPR 2020).
"""
def __init__(self, use_udp=False):
self.use_udp = use_udp
def __call__(self, results):
image_size = results['ann_info']['image_size']
img = results['img']
joints_3d = results['joints_3d']
joints_3d_visible = results['joints_3d_visible']
c = results['center']
s = results['scale']
r = results['rotation']
if self.use_udp:
trans = get_warp_matrix(r, c * 2.0, image_size - 1.0, s * 200.0)
if not isinstance(img, list):
img = cv2.warpAffine(
img,
trans, (int(image_size[0]), int(image_size[1])),
flags=cv2.INTER_LINEAR)
else:
img = [
cv2.warpAffine(
i,
trans, (int(image_size[0]), int(image_size[1])),
flags=cv2.INTER_LINEAR) for i in img
]
joints_3d[:, 0:2] = \
warp_affine_joints(joints_3d[:, 0:2].copy(), trans)
else:
trans = get_affine_transform(c, s, r, image_size)
if not isinstance(img, list):
img = cv2.warpAffine(
img,
trans, (int(image_size[0]), int(image_size[1])),
flags=cv2.INTER_LINEAR)
else:
img = [
cv2.warpAffine(
i,
trans, (int(image_size[0]), int(image_size[1])),
flags=cv2.INTER_LINEAR) for i in img
]
for i in range(results['ann_info']['num_joints']):
if joints_3d_visible[i, 0] > 0.0:
joints_3d[i,
0:2] = affine_transform(joints_3d[i, 0:2], trans)
results['img'] = img
results['joints_3d'] = joints_3d
results['joints_3d_visible'] = joints_3d_visible
return results
@PIPELINES.register_module()
class TopDownGenerateTarget:
"""Generate the target heatmap.
Required keys: 'joints_3d', 'joints_3d_visible', 'ann_info'.
Modified keys: 'target', and 'target_weight'.
Args:
sigma: Sigma of heatmap gaussian for 'MSRA' approach.
kernel: Kernel of heatmap gaussian for 'Megvii' approach.
encoding (str): Approach to generate target heatmaps.
Currently supported approaches: 'MSRA', 'Megvii', 'UDP'.
Default:'MSRA'
unbiased_encoding (bool): Option to use unbiased
encoding methods.
Paper ref: Zhang et al. Distribution-Aware Coordinate
Representation for Human Pose Estimation (CVPR 2020).
keypoint_pose_distance: Keypoint pose distance for UDP.
Paper ref: Huang et al. The Devil is in the Details: Delving into
Unbiased Data Processing for Human Pose Estimation (CVPR 2020).
target_type (str): supported targets: 'GaussianHeatmap',
'CombinedTarget'. Default:'GaussianHeatmap'
CombinedTarget: The combination of classification target
(response map) and regression target (offset map).
Paper ref: Huang et al. The Devil is in the Details: Delving into
Unbiased Data Processing for Human Pose Estimation (CVPR 2020).
"""
def __init__(self,
sigma=2,
kernel=(11, 11),
valid_radius_factor=0.0546875,
target_type='GaussianHeatmap',
encoding='MSRA',
unbiased_encoding=False):
self.sigma = sigma
self.unbiased_encoding = unbiased_encoding
self.kernel = kernel
self.valid_radius_factor = valid_radius_factor
self.target_type = target_type
self.encoding = encoding
def _msra_generate_target(self, cfg, joints_3d, joints_3d_visible, sigma):
"""Generate the target heatmap via "MSRA" approach.
Args:
cfg (dict): data config
joints_3d: np.ndarray ([num_joints, 3])
joints_3d_visible: np.ndarray ([num_joints, 3])
sigma: Sigma of heatmap gaussian
Returns:
tuple: A tuple containing targets.
- target: Target heatmaps.
- target_weight: (1: visible, 0: invisible)
"""
num_joints = cfg['num_joints']
image_size = cfg['image_size']
W, H = cfg['heatmap_size']
joint_weights = cfg['joint_weights']
use_different_joint_weights = cfg['use_different_joint_weights']
target_weight = np.zeros((num_joints, 1), dtype=np.float32)
target = np.zeros((num_joints, H, W), dtype=np.float32)
# 3-sigma rule
tmp_size = sigma * 3
if self.unbiased_encoding:
for joint_id in range(num_joints):
target_weight[joint_id] = joints_3d_visible[joint_id, 0]
feat_stride = image_size / [W, H]
mu_x = joints_3d[joint_id][0] / feat_stride[0]
mu_y = joints_3d[joint_id][1] / feat_stride[1]
# Check that any part of the gaussian is in-bounds
ul = [mu_x - tmp_size, mu_y - tmp_size]
br = [mu_x + tmp_size + 1, mu_y + tmp_size + 1]
if ul[0] >= W or ul[1] >= H or br[0] < 0 or br[1] < 0:
target_weight[joint_id] = 0
if target_weight[joint_id] == 0:
continue
x = np.arange(0, W, 1, np.float32)
y = np.arange(0, H, 1, np.float32)
y = y[:, None]
if target_weight[joint_id] > 0.5:
target[joint_id] = np.exp(-((x - mu_x)**2 +
(y - mu_y)**2) /
(2 * sigma**2))
else:
for joint_id in range(num_joints):
target_weight[joint_id] = joints_3d_visible[joint_id, 0]
feat_stride = image_size / [W, H]
mu_x = int(joints_3d[joint_id][0] / feat_stride[0] + 0.5)
mu_y = int(joints_3d[joint_id][1] / feat_stride[1] + 0.5)
# Check that any part of the gaussian is in-bounds
ul = [int(mu_x - tmp_size), int(mu_y - tmp_size)]
br = [int(mu_x + tmp_size + 1), int(mu_y + tmp_size + 1)]
if ul[0] >= W or ul[1] >= H or br[0] < 0 or br[1] < 0:
target_weight[joint_id] = 0
if target_weight[joint_id] > 0.5:
size = 2 * tmp_size + 1
x = np.arange(0, size, 1, np.float32)
y = x[:, None]
x0 = y0 = size // 2
# The gaussian is not normalized,
# we want the center value to equal 1
g = np.exp(-((x - x0)**2 + (y - y0)**2) / (2 * sigma**2))
# Usable gaussian range
g_x = max(0, -ul[0]), min(br[0], W) - ul[0]
g_y = max(0, -ul[1]), min(br[1], H) - ul[1]
# Image range
img_x = max(0, ul[0]), min(br[0], W)
img_y = max(0, ul[1]), min(br[1], H)
target[joint_id][img_y[0]:img_y[1], img_x[0]:img_x[1]] = \
g[g_y[0]:g_y[1], g_x[0]:g_x[1]]
if use_different_joint_weights:
target_weight = np.multiply(target_weight, joint_weights)
return target, target_weight
def _megvii_generate_target(self, cfg, joints_3d, joints_3d_visible,
kernel):
"""Generate the target heatmap via "Megvii" approach.
Args:
cfg (dict): data config
joints_3d: np.ndarray ([num_joints, 3])
joints_3d_visible: np.ndarray ([num_joints, 3])
kernel: Kernel of heatmap gaussian
Returns:
tuple: A tuple containing targets.
- target: Target heatmaps.
- target_weight: (1: visible, 0: invisible)
"""
num_joints = cfg['num_joints']
image_size = cfg['image_size']
W, H = cfg['heatmap_size']
heatmaps = np.zeros((num_joints, H, W), dtype='float32')
target_weight = np.zeros((num_joints, 1), dtype=np.float32)
for i in range(num_joints):
target_weight[i] = joints_3d_visible[i, 0]
if target_weight[i] < 1:
continue
target_y = int(joints_3d[i, 1] * H / image_size[1])
target_x = int(joints_3d[i, 0] * W / image_size[0])
if (target_x >= W or target_x < 0) \
or (target_y >= H or target_y < 0):
target_weight[i] = 0
continue
heatmaps[i, target_y, target_x] = 1
heatmaps[i] = cv2.GaussianBlur(heatmaps[i], kernel, 0)
maxi = heatmaps[i, target_y, target_x]
heatmaps[i] /= maxi / 255
return heatmaps, target_weight
def _udp_generate_target(self, cfg, joints_3d, joints_3d_visible, factor,
target_type):
"""Generate the target heatmap via 'UDP' approach. Paper ref: Huang et
al. The Devil is in the Details: Delving into Unbiased Data Processing
for Human Pose Estimation (CVPR 2020).
Note:
- num keypoints: K
- heatmap height: H
- heatmap width: W
- num target channels: C
- C = K if target_type=='GaussianHeatmap'
- C = 3*K if target_type=='CombinedTarget'
Args:
cfg (dict): data config
joints_3d (np.ndarray[K, 3]): Annotated keypoints.
joints_3d_visible (np.ndarray[K, 3]): Visibility of keypoints.
factor (float): kernel factor for GaussianHeatmap target or
valid radius factor for CombinedTarget.
target_type (str): 'GaussianHeatmap' or 'CombinedTarget'.
GaussianHeatmap: Heatmap target with gaussian distribution.
CombinedTarget: The combination of classification target
(response map) and regression target (offset map).
Returns:
tuple: A tuple containing targets.
- target (np.ndarray[C, H, W]): Target heatmaps.
- target_weight (np.ndarray[K, 1]): (1: visible, 0: invisible)
"""
num_joints = cfg['num_joints']
image_size = cfg['image_size']
heatmap_size = cfg['heatmap_size']
joint_weights = cfg['joint_weights']
use_different_joint_weights = cfg['use_different_joint_weights']
target_weight = np.ones((num_joints, 1), dtype=np.float32)
target_weight[:, 0] = joints_3d_visible[:, 0]
if target_type.lower() == 'GaussianHeatmap'.lower():
target = np.zeros((num_joints, heatmap_size[1], heatmap_size[0]),
dtype=np.float32)
tmp_size = factor * 3
# prepare for gaussian
size = 2 * tmp_size + 1
x = np.arange(0, size, 1, np.float32)
y = x[:, None]
for joint_id in range(num_joints):
feat_stride = (image_size - 1.0) / (heatmap_size - 1.0)
mu_x = int(joints_3d[joint_id][0] / feat_stride[0] + 0.5)
mu_y = int(joints_3d[joint_id][1] / feat_stride[1] + 0.5)
# Check that any part of the gaussian is in-bounds
ul = [int(mu_x - tmp_size), int(mu_y - tmp_size)]
br = [int(mu_x + tmp_size + 1), int(mu_y + tmp_size + 1)]
if ul[0] >= heatmap_size[0] or ul[1] >= heatmap_size[1] \
or br[0] < 0 or br[1] < 0:
# If not, just return the image as is
target_weight[joint_id] = 0
continue
# # Generate gaussian
mu_x_ac = joints_3d[joint_id][0] / feat_stride[0]
mu_y_ac = joints_3d[joint_id][1] / feat_stride[1]
x0 = y0 = size // 2
x0 += mu_x_ac - mu_x
y0 += mu_y_ac - mu_y
g = np.exp(-((x - x0)**2 + (y - y0)**2) / (2 * factor**2))
# Usable gaussian range
g_x = max(0, -ul[0]), min(br[0], heatmap_size[0]) - ul[0]
g_y = max(0, -ul[1]), min(br[1], heatmap_size[1]) - ul[1]
# Image range
img_x = max(0, ul[0]), min(br[0], heatmap_size[0])
img_y = max(0, ul[1]), min(br[1], heatmap_size[1])
v = target_weight[joint_id]
if v > 0.5:
target[joint_id][img_y[0]:img_y[1], img_x[0]:img_x[1]] = \
g[g_y[0]:g_y[1], g_x[0]:g_x[1]]
elif target_type.lower() == 'CombinedTarget'.lower():
target = np.zeros(
(num_joints, 3, heatmap_size[1] * heatmap_size[0]),
dtype=np.float32)
feat_width = heatmap_size[0]
feat_height = heatmap_size[1]
feat_x_int = np.arange(0, feat_width)
feat_y_int = np.arange(0, feat_height)
feat_x_int, feat_y_int = np.meshgrid(feat_x_int, feat_y_int)
feat_x_int = feat_x_int.flatten()
feat_y_int = feat_y_int.flatten()
# Calculate the radius of the positive area in classification
# heatmap.
valid_radius = factor * heatmap_size[1]
feat_stride = (image_size - 1.0) / (heatmap_size - 1.0)
for joint_id in range(num_joints):
mu_x = joints_3d[joint_id][0] / feat_stride[0]
mu_y = joints_3d[joint_id][1] / feat_stride[1]
x_offset = (mu_x - feat_x_int) / valid_radius
y_offset = (mu_y - feat_y_int) / valid_radius
dis = x_offset**2 + y_offset**2
keep_pos = np.where(dis <= 1)[0]
v = target_weight[joint_id]
if v > 0.5:
target[joint_id, 0, keep_pos] = 1
target[joint_id, 1, keep_pos] = x_offset[keep_pos]
target[joint_id, 2, keep_pos] = y_offset[keep_pos]
target = target.reshape(num_joints * 3, heatmap_size[1],
heatmap_size[0])
else:
raise ValueError('target_type should be either '
"'GaussianHeatmap' or 'CombinedTarget'")
if use_different_joint_weights:
target_weight = np.multiply(target_weight, joint_weights)
return target, target_weight
def __call__(self, results):
"""Generate the target heatmap."""
joints_3d = results['joints_3d']
joints_3d_visible = results['joints_3d_visible']
assert self.encoding in ['MSRA', 'Megvii', 'UDP']
if self.encoding == 'MSRA':
if isinstance(self.sigma, list):
num_sigmas = len(self.sigma)
cfg = results['ann_info']
num_joints = cfg['num_joints']
heatmap_size = cfg['heatmap_size']
target = np.empty(
(0, num_joints, heatmap_size[1], heatmap_size[0]),
dtype=np.float32)
target_weight = np.empty((0, num_joints, 1), dtype=np.float32)
for i in range(num_sigmas):
target_i, target_weight_i = self._msra_generate_target(
cfg, joints_3d, joints_3d_visible, self.sigma[i])
target = np.concatenate([target, target_i[None]], axis=0)
target_weight = np.concatenate(
[target_weight, target_weight_i[None]], axis=0)
else:
target, target_weight = self._msra_generate_target(
results['ann_info'], joints_3d, joints_3d_visible,
self.sigma)
elif self.encoding == 'Megvii':
if isinstance(self.kernel, list):
num_kernels = len(self.kernel)
cfg = results['ann_info']
num_joints = cfg['num_joints']
W, H = cfg['heatmap_size']
target = np.empty((0, num_joints, H, W), dtype=np.float32)
target_weight = np.empty((0, num_joints, 1), dtype=np.float32)
for i in range(num_kernels):
target_i, target_weight_i = self._megvii_generate_target(
cfg, joints_3d, joints_3d_visible, self.kernel[i])
target = np.concatenate([target, target_i[None]], axis=0)
target_weight = np.concatenate(
[target_weight, target_weight_i[None]], axis=0)
else:
target, target_weight = self._megvii_generate_target(
results['ann_info'], joints_3d, joints_3d_visible,
self.kernel)
elif self.encoding == 'UDP':
if self.target_type.lower() == 'CombinedTarget'.lower():
factors = self.valid_radius_factor
channel_factor = 3
elif self.target_type.lower() == 'GaussianHeatmap'.lower():
factors = self.sigma
channel_factor = 1
else:
raise ValueError('target_type should be either '
"'GaussianHeatmap' or 'CombinedTarget'")
if isinstance(factors, list):
num_factors = len(factors)
cfg = results['ann_info']
num_joints = cfg['num_joints']
W, H = cfg['heatmap_size']
target = np.empty((0, channel_factor * num_joints, H, W),
dtype=np.float32)
target_weight = np.empty((0, num_joints, 1), dtype=np.float32)
for i in range(num_factors):
target_i, target_weight_i = self._udp_generate_target(
cfg, joints_3d, joints_3d_visible, factors[i],
self.target_type)
target = np.concatenate([target, target_i[None]], axis=0)
target_weight = np.concatenate(
[target_weight, target_weight_i[None]], axis=0)
else:
target, target_weight = self._udp_generate_target(
results['ann_info'], joints_3d, joints_3d_visible, factors,
self.target_type)
else:
raise ValueError(
f'Encoding approach {self.encoding} is not supported!')
if results['ann_info'].get('max_num_joints', None) is not None:
W, H = results['ann_info']['heatmap_size']
padded_length = int(results['ann_info'].get('max_num_joints') - results['ann_info'].get('num_joints'))
target_weight = np.concatenate([target_weight, np.zeros((padded_length, 1), dtype=np.float32)], 0)
target = np.concatenate([target, np.zeros((padded_length, H, W), dtype=np.float32)], 0)
results['target'] = target
results['target_weight'] = target_weight
results['dataset_idx'] = results['ann_info'].get('dataset_idx', 0)
return results
@PIPELINES.register_module()
class TopDownGenerateTargetRegression:
"""Generate the target regression vector (coordinates).
Required keys: 'joints_3d', 'joints_3d_visible', 'ann_info'. Modified keys:
'target', and 'target_weight'.
"""
def __init__(self):
pass
def _generate_target(self, cfg, joints_3d, joints_3d_visible):
"""Generate the target regression vector.
Args:
cfg (dict): data config
joints_3d: np.ndarray([num_joints, 3])
joints_3d_visible: np.ndarray([num_joints, 3])
Returns:
target, target_weight(1: visible, 0: invisible)
"""
image_size = cfg['image_size']
joint_weights = cfg['joint_weights']
use_different_joint_weights = cfg['use_different_joint_weights']
mask = (joints_3d[:, 0] >= 0) * (
joints_3d[:, 0] <= image_size[0] - 1) * (joints_3d[:, 1] >= 0) * (
joints_3d[:, 1] <= image_size[1] - 1)
target = joints_3d[:, :2] / image_size
target = target.astype(np.float32)
target_weight = joints_3d_visible[:, :2] * mask[:, None]
if use_different_joint_weights:
target_weight = np.multiply(target_weight, joint_weights)
return target, target_weight
def __call__(self, results):
"""Generate the target heatmap."""
joints_3d = results['joints_3d']
joints_3d_visible = results['joints_3d_visible']
target, target_weight = self._generate_target(results['ann_info'],
joints_3d,
joints_3d_visible)
results['target'] = target
results['target_weight'] = target_weight
return results
@PIPELINES.register_module()
class TopDownRandomTranslation:
"""Data augmentation with random translation.
Required key: 'scale' and 'center'.
Modifies key: 'center'.
Note:
- bbox height: H
- bbox width: W
Args:
trans_factor (float): Translating center to
``[-trans_factor, trans_factor] * [W, H] + center``.
trans_prob (float): Probability of random translation.
"""
def __init__(self, trans_factor=0.15, trans_prob=1.0):
self.trans_factor = trans_factor
self.trans_prob = trans_prob
def __call__(self, results):
"""Perform data augmentation with random translation."""
center = results['center']
scale = results['scale']
if np.random.rand() <= self.trans_prob:
# reference bbox size is [200, 200] pixels
center += self.trans_factor * np.random.uniform(
-1, 1, size=2) * scale * 200
results['center'] = center
return results
|