File size: 12,669 Bytes
d7a991a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import copy
import os
import numpy as np
import torch
from typing import List
from yacs.config import CfgNode
import braceexpand
import cv2

from .dataset import Dataset
from .utils import get_example, expand_to_aspect_ratio

def expand(s):
    return os.path.expanduser(os.path.expandvars(s))
def expand_urls(urls: str|List[str]):
    if isinstance(urls, str):
        urls = [urls]
    urls = [u for url in urls for u in braceexpand.braceexpand(expand(url))]
    return urls

FLIP_KEYPOINT_PERMUTATION = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

DEFAULT_MEAN = 255. * np.array([0.485, 0.456, 0.406])
DEFAULT_STD = 255. * np.array([0.229, 0.224, 0.225])
DEFAULT_IMG_SIZE = 256

class ImageDataset(Dataset):

    @staticmethod
    def load_tars_as_webdataset(cfg: CfgNode, urls: str|List[str], train: bool,
            resampled=False,
            epoch_size=None,
            cache_dir=None,
            **kwargs) -> Dataset:
        """
        Loads the dataset from a webdataset tar file.
        """

        IMG_SIZE = cfg.MODEL.IMAGE_SIZE
        BBOX_SHAPE = cfg.MODEL.get('BBOX_SHAPE', None)
        MEAN = 255. * np.array(cfg.MODEL.IMAGE_MEAN)
        STD = 255. * np.array(cfg.MODEL.IMAGE_STD)

        def split_data(source):
            for item in source:
                datas = item['data.pyd']
                for data in datas:
                    if 'detection.npz' in item:
                        det_idx = data['extra_info']['detection_npz_idx']
                        mask = item['detection.npz']['masks'][det_idx]
                    else:
                        mask = np.ones_like(item['jpg'][:,:,0], dtype=bool)
                    yield {
                        '__key__': item['__key__'],
                        'jpg': item['jpg'],
                        'data.pyd': data,
                        'mask': mask,
                    }

        def suppress_bad_kps(item, thresh=0.0):
            if thresh > 0:
                kp2d = item['data.pyd']['keypoints_2d']
                kp2d_conf = np.where(kp2d[:, 2] < thresh, 0.0, kp2d[:, 2])
                item['data.pyd']['keypoints_2d'] = np.concatenate([kp2d[:,:2], kp2d_conf[:,None]], axis=1)
            return item

        def filter_numkp(item, numkp=4, thresh=0.0):
            kp_conf = item['data.pyd']['keypoints_2d'][:, 2]
            return (kp_conf > thresh).sum() > numkp

        def filter_reproj_error(item, thresh=10**4.5):
            losses = item['data.pyd'].get('extra_info', {}).get('fitting_loss', np.array({})).item()
            reproj_loss = losses.get('reprojection_loss', None)
            return reproj_loss is None or reproj_loss < thresh

        def filter_bbox_size(item, thresh=1):
            bbox_size_min = item['data.pyd']['scale'].min().item() * 200.
            return bbox_size_min > thresh

        def filter_no_poses(item):
            return (item['data.pyd']['has_hand_pose'] > 0)

        def supress_bad_betas(item, thresh=3):
            has_betas = item['data.pyd']['has_betas']
            if thresh > 0 and has_betas:
                betas_abs = np.abs(item['data.pyd']['betas'])
                if (betas_abs > thresh).any():
                    item['data.pyd']['has_betas'] = False
            return item

        def supress_bad_poses(item):
            has_hand_pose = item['data.pyd']['has_hand_pose']
            if has_hand_pose:
                hand_pose = item['data.pyd']['hand_pose']
                pose_is_probable = poses_check_probable(torch.from_numpy(hand_pose)[None, 3:], amass_poses_hist100_smooth).item()
                if not pose_is_probable:
                    item['data.pyd']['has_hand_pose'] = False
            return item

        def poses_betas_simultaneous(item):
            # We either have both hand_pose and betas, or neither
            has_betas = item['data.pyd']['has_betas']
            has_hand_pose = item['data.pyd']['has_hand_pose']
            item['data.pyd']['has_betas'] = item['data.pyd']['has_hand_pose'] = np.array(float((has_hand_pose>0) and (has_betas>0)))
            return item

        def set_betas_for_reg(item):
            # Always have betas set to true
            has_betas = item['data.pyd']['has_betas']
            betas = item['data.pyd']['betas']

            if not (has_betas>0):
                item['data.pyd']['has_betas'] = np.array(float((True)))
                item['data.pyd']['betas'] = betas * 0
            return item

        # Load the dataset
        if epoch_size is not None:
            resampled = True
        #corrupt_filter = lambda sample: (sample['__key__'] not in CORRUPT_KEYS)
        import webdataset as wds
        dataset = wds.WebDataset(expand_urls(urls),
                                nodesplitter=wds.split_by_node,
                                shardshuffle=True,
                                resampled=resampled,
                                cache_dir=cache_dir,
                              ) #.select(corrupt_filter)
        if train:
            dataset = dataset.shuffle(100)
        dataset = dataset.decode('rgb8').rename(jpg='jpg;jpeg;png')

        # Process the dataset
        dataset = dataset.compose(split_data)

        # Filter/clean the dataset
        SUPPRESS_KP_CONF_THRESH = cfg.DATASETS.get('SUPPRESS_KP_CONF_THRESH', 0.0)
        SUPPRESS_BETAS_THRESH = cfg.DATASETS.get('SUPPRESS_BETAS_THRESH', 0.0)
        SUPPRESS_BAD_POSES = cfg.DATASETS.get('SUPPRESS_BAD_POSES', False)
        POSES_BETAS_SIMULTANEOUS = cfg.DATASETS.get('POSES_BETAS_SIMULTANEOUS', False)
        BETAS_REG = cfg.DATASETS.get('BETAS_REG', False)
        FILTER_NO_POSES = cfg.DATASETS.get('FILTER_NO_POSES', False)
        FILTER_NUM_KP = cfg.DATASETS.get('FILTER_NUM_KP', 4)
        FILTER_NUM_KP_THRESH = cfg.DATASETS.get('FILTER_NUM_KP_THRESH', 0.0)
        FILTER_REPROJ_THRESH = cfg.DATASETS.get('FILTER_REPROJ_THRESH', 0.0)
        FILTER_MIN_BBOX_SIZE = cfg.DATASETS.get('FILTER_MIN_BBOX_SIZE', 0.0)
        if SUPPRESS_KP_CONF_THRESH > 0:
            dataset = dataset.map(lambda x: suppress_bad_kps(x, thresh=SUPPRESS_KP_CONF_THRESH))
        if SUPPRESS_BETAS_THRESH > 0:
            dataset = dataset.map(lambda x: supress_bad_betas(x, thresh=SUPPRESS_BETAS_THRESH))
        if SUPPRESS_BAD_POSES:
            dataset = dataset.map(lambda x: supress_bad_poses(x))
        if POSES_BETAS_SIMULTANEOUS:
            dataset = dataset.map(lambda x: poses_betas_simultaneous(x))
        if FILTER_NO_POSES:
            dataset = dataset.select(lambda x: filter_no_poses(x))
        if FILTER_NUM_KP > 0:
            dataset = dataset.select(lambda x: filter_numkp(x, numkp=FILTER_NUM_KP, thresh=FILTER_NUM_KP_THRESH))
        if FILTER_REPROJ_THRESH > 0:
            dataset = dataset.select(lambda x: filter_reproj_error(x, thresh=FILTER_REPROJ_THRESH))
        if FILTER_MIN_BBOX_SIZE > 0:
            dataset = dataset.select(lambda x: filter_bbox_size(x, thresh=FILTER_MIN_BBOX_SIZE))
        if BETAS_REG:
            dataset = dataset.map(lambda x: set_betas_for_reg(x))       # NOTE: Must be at the end

        use_skimage_antialias = cfg.DATASETS.get('USE_SKIMAGE_ANTIALIAS', False)
        border_mode = {
            'constant': cv2.BORDER_CONSTANT,
            'replicate': cv2.BORDER_REPLICATE,
        }[cfg.DATASETS.get('BORDER_MODE', 'constant')]

        # Process the dataset further
        dataset = dataset.map(lambda x: ImageDataset.process_webdataset_tar_item(x, train,
                                                        augm_config=cfg.DATASETS.CONFIG,
                                                        MEAN=MEAN, STD=STD, IMG_SIZE=IMG_SIZE,
                                                        BBOX_SHAPE=BBOX_SHAPE,
                                                        use_skimage_antialias=use_skimage_antialias,
                                                        border_mode=border_mode,
                                                        ))
        if epoch_size is not None:
            dataset = dataset.with_epoch(epoch_size)

        return dataset

    @staticmethod
    def process_webdataset_tar_item(item, train, 
                                    augm_config=None, 
                                    MEAN=DEFAULT_MEAN, 
                                    STD=DEFAULT_STD, 
                                    IMG_SIZE=DEFAULT_IMG_SIZE,
                                    BBOX_SHAPE=None,
                                    use_skimage_antialias=False,
                                    border_mode=cv2.BORDER_CONSTANT,
                                    ):
        # Read data from item
        key = item['__key__']
        image = item['jpg']
        data = item['data.pyd']
        mask = item['mask']

        keypoints_2d = data['keypoints_2d']
        keypoints_3d = data['keypoints_3d']
        center = data['center']
        scale = data['scale']
        hand_pose = data['hand_pose']
        betas = data['betas']
        right = data['right']
        #right = True
        has_hand_pose = data['has_hand_pose']
        has_betas = data['has_betas']
        # image_file = data['image_file']

        # Process data
        orig_keypoints_2d = keypoints_2d.copy()
        center_x = center[0]
        center_y = center[1]
        bbox_size = expand_to_aspect_ratio(scale*200, target_aspect_ratio=BBOX_SHAPE).max()
        if bbox_size < 1:
            breakpoint()


        mano_params = {'global_orient': hand_pose[:3],
                    'hand_pose': hand_pose[3:],
                    'betas': betas
                    }

        has_mano_params = {'global_orient': has_hand_pose,
                        'hand_pose': has_hand_pose,
                        'betas': has_betas
                        }

        mano_params_is_axis_angle = {'global_orient': True,
                                    'hand_pose': True,
                                    'betas': False
                                    }

        augm_config = copy.deepcopy(augm_config)
        # Crop image and (possibly) perform data augmentation
        img_rgba = np.concatenate([image, mask.astype(np.uint8)[:,:,None]*255], axis=2)
        img_patch_rgba, keypoints_2d, keypoints_3d, mano_params, has_mano_params, img_size, trans = get_example(img_rgba,
                                                                                                    center_x, center_y,
                                                                                                    bbox_size, bbox_size,
                                                                                                    keypoints_2d, keypoints_3d,
                                                                                                    mano_params, has_mano_params,
                                                                                                    FLIP_KEYPOINT_PERMUTATION,
                                                                                                    IMG_SIZE, IMG_SIZE,
                                                                                                    MEAN, STD, train, right, augm_config,
                                                                                                    is_bgr=False, return_trans=True,
                                                                                                    use_skimage_antialias=use_skimage_antialias,
                                                                                                    border_mode=border_mode,
                                                                                                    )
        img_patch = img_patch_rgba[:3,:,:]
        mask_patch = (img_patch_rgba[3,:,:] / 255.0).clip(0,1)
        if (mask_patch < 0.5).all():
            mask_patch = np.ones_like(mask_patch)

        item = {}

        item['img'] = img_patch
        item['mask'] = mask_patch
        # item['img_og'] = image
        # item['mask_og'] = mask
        item['keypoints_2d'] = keypoints_2d.astype(np.float32)
        item['keypoints_3d'] = keypoints_3d.astype(np.float32)
        item['orig_keypoints_2d'] = orig_keypoints_2d
        item['box_center'] = center.copy()
        item['box_size'] = bbox_size
        item['img_size'] = 1.0 * img_size[::-1].copy()
        item['mano_params'] = mano_params
        item['has_mano_params'] = has_mano_params
        item['mano_params_is_axis_angle'] = mano_params_is_axis_angle
        item['_scale'] = scale
        item['_trans'] = trans
        item['imgname'] = key
        # item['idx'] = idx
        return item