Spaces:
Build error
Build error
File size: 12,669 Bytes
d7a991a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
import copy
import os
import numpy as np
import torch
from typing import List
from yacs.config import CfgNode
import braceexpand
import cv2
from .dataset import Dataset
from .utils import get_example, expand_to_aspect_ratio
def expand(s):
return os.path.expanduser(os.path.expandvars(s))
def expand_urls(urls: str|List[str]):
if isinstance(urls, str):
urls = [urls]
urls = [u for url in urls for u in braceexpand.braceexpand(expand(url))]
return urls
FLIP_KEYPOINT_PERMUTATION = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]
DEFAULT_MEAN = 255. * np.array([0.485, 0.456, 0.406])
DEFAULT_STD = 255. * np.array([0.229, 0.224, 0.225])
DEFAULT_IMG_SIZE = 256
class ImageDataset(Dataset):
@staticmethod
def load_tars_as_webdataset(cfg: CfgNode, urls: str|List[str], train: bool,
resampled=False,
epoch_size=None,
cache_dir=None,
**kwargs) -> Dataset:
"""
Loads the dataset from a webdataset tar file.
"""
IMG_SIZE = cfg.MODEL.IMAGE_SIZE
BBOX_SHAPE = cfg.MODEL.get('BBOX_SHAPE', None)
MEAN = 255. * np.array(cfg.MODEL.IMAGE_MEAN)
STD = 255. * np.array(cfg.MODEL.IMAGE_STD)
def split_data(source):
for item in source:
datas = item['data.pyd']
for data in datas:
if 'detection.npz' in item:
det_idx = data['extra_info']['detection_npz_idx']
mask = item['detection.npz']['masks'][det_idx]
else:
mask = np.ones_like(item['jpg'][:,:,0], dtype=bool)
yield {
'__key__': item['__key__'],
'jpg': item['jpg'],
'data.pyd': data,
'mask': mask,
}
def suppress_bad_kps(item, thresh=0.0):
if thresh > 0:
kp2d = item['data.pyd']['keypoints_2d']
kp2d_conf = np.where(kp2d[:, 2] < thresh, 0.0, kp2d[:, 2])
item['data.pyd']['keypoints_2d'] = np.concatenate([kp2d[:,:2], kp2d_conf[:,None]], axis=1)
return item
def filter_numkp(item, numkp=4, thresh=0.0):
kp_conf = item['data.pyd']['keypoints_2d'][:, 2]
return (kp_conf > thresh).sum() > numkp
def filter_reproj_error(item, thresh=10**4.5):
losses = item['data.pyd'].get('extra_info', {}).get('fitting_loss', np.array({})).item()
reproj_loss = losses.get('reprojection_loss', None)
return reproj_loss is None or reproj_loss < thresh
def filter_bbox_size(item, thresh=1):
bbox_size_min = item['data.pyd']['scale'].min().item() * 200.
return bbox_size_min > thresh
def filter_no_poses(item):
return (item['data.pyd']['has_hand_pose'] > 0)
def supress_bad_betas(item, thresh=3):
has_betas = item['data.pyd']['has_betas']
if thresh > 0 and has_betas:
betas_abs = np.abs(item['data.pyd']['betas'])
if (betas_abs > thresh).any():
item['data.pyd']['has_betas'] = False
return item
def supress_bad_poses(item):
has_hand_pose = item['data.pyd']['has_hand_pose']
if has_hand_pose:
hand_pose = item['data.pyd']['hand_pose']
pose_is_probable = poses_check_probable(torch.from_numpy(hand_pose)[None, 3:], amass_poses_hist100_smooth).item()
if not pose_is_probable:
item['data.pyd']['has_hand_pose'] = False
return item
def poses_betas_simultaneous(item):
# We either have both hand_pose and betas, or neither
has_betas = item['data.pyd']['has_betas']
has_hand_pose = item['data.pyd']['has_hand_pose']
item['data.pyd']['has_betas'] = item['data.pyd']['has_hand_pose'] = np.array(float((has_hand_pose>0) and (has_betas>0)))
return item
def set_betas_for_reg(item):
# Always have betas set to true
has_betas = item['data.pyd']['has_betas']
betas = item['data.pyd']['betas']
if not (has_betas>0):
item['data.pyd']['has_betas'] = np.array(float((True)))
item['data.pyd']['betas'] = betas * 0
return item
# Load the dataset
if epoch_size is not None:
resampled = True
#corrupt_filter = lambda sample: (sample['__key__'] not in CORRUPT_KEYS)
import webdataset as wds
dataset = wds.WebDataset(expand_urls(urls),
nodesplitter=wds.split_by_node,
shardshuffle=True,
resampled=resampled,
cache_dir=cache_dir,
) #.select(corrupt_filter)
if train:
dataset = dataset.shuffle(100)
dataset = dataset.decode('rgb8').rename(jpg='jpg;jpeg;png')
# Process the dataset
dataset = dataset.compose(split_data)
# Filter/clean the dataset
SUPPRESS_KP_CONF_THRESH = cfg.DATASETS.get('SUPPRESS_KP_CONF_THRESH', 0.0)
SUPPRESS_BETAS_THRESH = cfg.DATASETS.get('SUPPRESS_BETAS_THRESH', 0.0)
SUPPRESS_BAD_POSES = cfg.DATASETS.get('SUPPRESS_BAD_POSES', False)
POSES_BETAS_SIMULTANEOUS = cfg.DATASETS.get('POSES_BETAS_SIMULTANEOUS', False)
BETAS_REG = cfg.DATASETS.get('BETAS_REG', False)
FILTER_NO_POSES = cfg.DATASETS.get('FILTER_NO_POSES', False)
FILTER_NUM_KP = cfg.DATASETS.get('FILTER_NUM_KP', 4)
FILTER_NUM_KP_THRESH = cfg.DATASETS.get('FILTER_NUM_KP_THRESH', 0.0)
FILTER_REPROJ_THRESH = cfg.DATASETS.get('FILTER_REPROJ_THRESH', 0.0)
FILTER_MIN_BBOX_SIZE = cfg.DATASETS.get('FILTER_MIN_BBOX_SIZE', 0.0)
if SUPPRESS_KP_CONF_THRESH > 0:
dataset = dataset.map(lambda x: suppress_bad_kps(x, thresh=SUPPRESS_KP_CONF_THRESH))
if SUPPRESS_BETAS_THRESH > 0:
dataset = dataset.map(lambda x: supress_bad_betas(x, thresh=SUPPRESS_BETAS_THRESH))
if SUPPRESS_BAD_POSES:
dataset = dataset.map(lambda x: supress_bad_poses(x))
if POSES_BETAS_SIMULTANEOUS:
dataset = dataset.map(lambda x: poses_betas_simultaneous(x))
if FILTER_NO_POSES:
dataset = dataset.select(lambda x: filter_no_poses(x))
if FILTER_NUM_KP > 0:
dataset = dataset.select(lambda x: filter_numkp(x, numkp=FILTER_NUM_KP, thresh=FILTER_NUM_KP_THRESH))
if FILTER_REPROJ_THRESH > 0:
dataset = dataset.select(lambda x: filter_reproj_error(x, thresh=FILTER_REPROJ_THRESH))
if FILTER_MIN_BBOX_SIZE > 0:
dataset = dataset.select(lambda x: filter_bbox_size(x, thresh=FILTER_MIN_BBOX_SIZE))
if BETAS_REG:
dataset = dataset.map(lambda x: set_betas_for_reg(x)) # NOTE: Must be at the end
use_skimage_antialias = cfg.DATASETS.get('USE_SKIMAGE_ANTIALIAS', False)
border_mode = {
'constant': cv2.BORDER_CONSTANT,
'replicate': cv2.BORDER_REPLICATE,
}[cfg.DATASETS.get('BORDER_MODE', 'constant')]
# Process the dataset further
dataset = dataset.map(lambda x: ImageDataset.process_webdataset_tar_item(x, train,
augm_config=cfg.DATASETS.CONFIG,
MEAN=MEAN, STD=STD, IMG_SIZE=IMG_SIZE,
BBOX_SHAPE=BBOX_SHAPE,
use_skimage_antialias=use_skimage_antialias,
border_mode=border_mode,
))
if epoch_size is not None:
dataset = dataset.with_epoch(epoch_size)
return dataset
@staticmethod
def process_webdataset_tar_item(item, train,
augm_config=None,
MEAN=DEFAULT_MEAN,
STD=DEFAULT_STD,
IMG_SIZE=DEFAULT_IMG_SIZE,
BBOX_SHAPE=None,
use_skimage_antialias=False,
border_mode=cv2.BORDER_CONSTANT,
):
# Read data from item
key = item['__key__']
image = item['jpg']
data = item['data.pyd']
mask = item['mask']
keypoints_2d = data['keypoints_2d']
keypoints_3d = data['keypoints_3d']
center = data['center']
scale = data['scale']
hand_pose = data['hand_pose']
betas = data['betas']
right = data['right']
#right = True
has_hand_pose = data['has_hand_pose']
has_betas = data['has_betas']
# image_file = data['image_file']
# Process data
orig_keypoints_2d = keypoints_2d.copy()
center_x = center[0]
center_y = center[1]
bbox_size = expand_to_aspect_ratio(scale*200, target_aspect_ratio=BBOX_SHAPE).max()
if bbox_size < 1:
breakpoint()
mano_params = {'global_orient': hand_pose[:3],
'hand_pose': hand_pose[3:],
'betas': betas
}
has_mano_params = {'global_orient': has_hand_pose,
'hand_pose': has_hand_pose,
'betas': has_betas
}
mano_params_is_axis_angle = {'global_orient': True,
'hand_pose': True,
'betas': False
}
augm_config = copy.deepcopy(augm_config)
# Crop image and (possibly) perform data augmentation
img_rgba = np.concatenate([image, mask.astype(np.uint8)[:,:,None]*255], axis=2)
img_patch_rgba, keypoints_2d, keypoints_3d, mano_params, has_mano_params, img_size, trans = get_example(img_rgba,
center_x, center_y,
bbox_size, bbox_size,
keypoints_2d, keypoints_3d,
mano_params, has_mano_params,
FLIP_KEYPOINT_PERMUTATION,
IMG_SIZE, IMG_SIZE,
MEAN, STD, train, right, augm_config,
is_bgr=False, return_trans=True,
use_skimage_antialias=use_skimage_antialias,
border_mode=border_mode,
)
img_patch = img_patch_rgba[:3,:,:]
mask_patch = (img_patch_rgba[3,:,:] / 255.0).clip(0,1)
if (mask_patch < 0.5).all():
mask_patch = np.ones_like(mask_patch)
item = {}
item['img'] = img_patch
item['mask'] = mask_patch
# item['img_og'] = image
# item['mask_og'] = mask
item['keypoints_2d'] = keypoints_2d.astype(np.float32)
item['keypoints_3d'] = keypoints_3d.astype(np.float32)
item['orig_keypoints_2d'] = orig_keypoints_2d
item['box_center'] = center.copy()
item['box_size'] = bbox_size
item['img_size'] = 1.0 * img_size[::-1].copy()
item['mano_params'] = mano_params
item['has_mano_params'] = has_mano_params
item['mano_params_is_axis_angle'] = mano_params_is_axis_angle
item['_scale'] = scale
item['_trans'] = trans
item['imgname'] = key
# item['idx'] = idx
return item
|