File size: 6,340 Bytes
d7a991a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
## 2D Human Pose Demo

<img src="https://raw.githubusercontent.com/open-mmlab/mmpose/master/demo/resources/demo_coco.gif" width="600px" alt><br>

### 2D Human Pose Top-Down Image Demo

#### Using gt human bounding boxes as input

We provide a demo script to test a single image, given gt json file.

```shell
python demo/top_down_img_demo.py \
    ${MMPOSE_CONFIG_FILE} ${MMPOSE_CHECKPOINT_FILE} \
    --img-root ${IMG_ROOT} --json-file ${JSON_FILE} \
    --out-img-root ${OUTPUT_DIR} \
    [--show --device ${GPU_ID or CPU}] \
    [--kpt-thr ${KPT_SCORE_THR}]
```

Examples:

```shell
python demo/top_down_img_demo.py \
    configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/hrnet_w48_coco_256x192.py \
    https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth \
    --img-root tests/data/coco/ --json-file tests/data/coco/test_coco.json \
    --out-img-root vis_results
```

To run demos on CPU:

```shell
python demo/top_down_img_demo.py \
    configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/hrnet_w48_coco_256x192.py \
    https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth \
    --img-root tests/data/coco/ --json-file tests/data/coco/test_coco.json \
    --out-img-root vis_results \
    --device=cpu
```

#### Using mmdet for human bounding box detection

We provide a demo script to run mmdet for human detection, and mmpose for pose estimation.

Assume that you have already installed [mmdet](https://github.com/open-mmlab/mmdetection).

```shell
python demo/top_down_img_demo_with_mmdet.py \
    ${MMDET_CONFIG_FILE} ${MMDET_CHECKPOINT_FILE} \
    ${MMPOSE_CONFIG_FILE} ${MMPOSE_CHECKPOINT_FILE} \
    --img-root ${IMG_ROOT} --img ${IMG_FILE} \
    --out-img-root ${OUTPUT_DIR} \
    [--show --device ${GPU_ID or CPU}] \
    [--bbox-thr ${BBOX_SCORE_THR} --kpt-thr ${KPT_SCORE_THR}]
```

Examples:

```shell
python demo/top_down_img_demo_with_mmdet.py \
    demo/mmdetection_cfg/faster_rcnn_r50_fpn_coco.py \
    https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
    configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/hrnet_w48_coco_256x192.py \
    https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth \
    --img-root tests/data/coco/ \
    --img 000000196141.jpg \
    --out-img-root vis_results
```

### 2D Human Pose Top-Down Video Demo

We also provide a video demo to illustrate the results.

Assume that you have already installed [mmdet](https://github.com/open-mmlab/mmdetection).

```shell
python demo/top_down_video_demo_with_mmdet.py \
    ${MMDET_CONFIG_FILE} ${MMDET_CHECKPOINT_FILE} \
    ${MMPOSE_CONFIG_FILE} ${MMPOSE_CHECKPOINT_FILE} \
    --video-path ${VIDEO_FILE} \
    --out-video-root ${OUTPUT_VIDEO_ROOT} \
    [--show --device ${GPU_ID or CPU}] \
    [--bbox-thr ${BBOX_SCORE_THR} --kpt-thr ${KPT_SCORE_THR}]
```

Examples:

```shell
python demo/top_down_video_demo_with_mmdet.py \
    demo/mmdetection_cfg/faster_rcnn_r50_fpn_coco.py \
    https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
    configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/hrnet_w48_coco_256x192.py \
    https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth \
    --video-path demo/resources/demo.mp4 \
    --out-video-root vis_results
```

### 2D Human Pose Bottom-Up Image Demo

We provide a demo script to test a single image.

```shell
python demo/bottom_up_img_demo.py \
    ${MMPOSE_CONFIG_FILE} ${MMPOSE_CHECKPOINT_FILE} \
    --img-path ${IMG_PATH}\
    --out-img-root ${OUTPUT_DIR} \
    [--show --device ${GPU_ID or CPU}] \
    [--kpt-thr ${KPT_SCORE_THR} --pose-nms-thr ${POSE_NMS_THR}]
```

Examples:

```shell
python demo/bottom_up_img_demo.py \
    configs/body/2d_kpt_sview_rgb_img/associative_embedding/coco/hrnet_w32_coco_512x512.py \
    https://download.openmmlab.com/mmpose/bottom_up/hrnet_w32_coco_512x512-bcb8c247_20200816.pth \
    --img-path tests/data/coco/ \
    --out-img-root vis_results
```

### 2D Human Pose Bottom-Up Video Demo

We also provide a video demo to illustrate the results.

```shell
python demo/bottom_up_video_demo.py \
    ${MMPOSE_CONFIG_FILE} ${MMPOSE_CHECKPOINT_FILE} \
    --video-path ${VIDEO_FILE} \
    --out-video-root ${OUTPUT_VIDEO_ROOT} \
    [--show --device ${GPU_ID or CPU}] \
    [--kpt-thr ${KPT_SCORE_THR} --pose-nms-thr ${POSE_NMS_THR}]
```

Examples:

```shell
python demo/bottom_up_video_demo.py \
    configs/body/2d_kpt_sview_rgb_img/associative_embedding/coco/hrnet_w32_coco_512x512.py \
    https://download.openmmlab.com/mmpose/bottom_up/hrnet_w32_coco_512x512-bcb8c247_20200816.pth \
    --video-path demo/resources/demo.mp4 \
    --out-video-root vis_results
```

### Speed Up Inference

Some tips to speed up MMPose inference:

For top-down models, try to edit the config file. For example,

1. set `flip_test=False` in [topdown-res50](https://github.com/open-mmlab/mmpose/tree/e1ec589884235bee875c89102170439a991f8450/configs/top_down/resnet/coco/res50_coco_256x192.py#L51).
1. set `post_process='default'` in [topdown-res50](https://github.com/open-mmlab/mmpose/tree/e1ec589884235bee875c89102170439a991f8450/configs/top_down/resnet/coco/res50_coco_256x192.py#L52).
1. use faster human bounding box detector, see [MMDetection](https://mmdetection.readthedocs.io/en/latest/model_zoo.html).

For bottom-up models, try to edit the config file. For example,

1. set `flip_test=False` in [AE-res50](https://github.com/open-mmlab/mmpose/tree/e1ec589884235bee875c89102170439a991f8450/configs/bottom_up/resnet/coco/res50_coco_512x512.py#L80).
1. set `adjust=False` in [AE-res50](https://github.com/open-mmlab/mmpose/tree/e1ec589884235bee875c89102170439a991f8450/configs/bottom_up/resnet/coco/res50_coco_512x512.py#L78).
1. set `refine=False` in [AE-res50](https://github.com/open-mmlab/mmpose/tree/e1ec589884235bee875c89102170439a991f8450/configs/bottom_up/resnet/coco/res50_coco_512x512.py#L79).
1. use smaller input image size in [AE-res50](https://github.com/open-mmlab/mmpose/tree/e1ec589884235bee875c89102170439a991f8450/configs/bottom_up/resnet/coco/res50_coco_512x512.py#L39).