Spaces:
Build error
Build error
File size: 4,568 Bytes
d7a991a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
## 2D Human Whole-Body Pose Demo
<img src="https://user-images.githubusercontent.com/9464825/95552839-00a61080-0a40-11eb-818c-b8dad7307217.gif" width="600px" alt><br>
### 2D Human Whole-Body Pose Top-Down Image Demo
#### Using gt human bounding boxes as input
We provide a demo script to test a single image, given gt json file.
```shell
python demo/top_down_img_demo.py \
${MMPOSE_CONFIG_FILE} ${MMPOSE_CHECKPOINT_FILE} \
--img-root ${IMG_ROOT} --json-file ${JSON_FILE} \
--out-img-root ${OUTPUT_DIR} \
[--show --device ${GPU_ID or CPU}] \
[--kpt-thr ${KPT_SCORE_THR}]
```
Examples:
```shell
python demo/top_down_img_demo.py \
configs/wholebody/2d_kpt_sview_rgb_img/topdown_heatmap/coco-wholebody/hrnet_w48_coco_wholebody_384x288_dark_plus.py \
https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w48_coco_wholebody_384x288_dark-f5726563_20200918.pth \
--img-root tests/data/coco/ --json-file tests/data/coco/test_coco.json \
--out-img-root vis_results
```
To run demos on CPU:
```shell
python demo/top_down_img_demo.py \
configs/wholebody/2d_kpt_sview_rgb_img/topdown_heatmap/coco-wholebody/hrnet_w48_coco_wholebody_384x288_dark_plus.py \
https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w48_coco_wholebody_384x288_dark-f5726563_20200918.pth \
--img-root tests/data/coco/ --json-file tests/data/coco/test_coco.json \
--out-img-root vis_results \
--device=cpu
```
#### Using mmdet for human bounding box detection
We provide a demo script to run mmdet for human detection, and mmpose for pose estimation.
Assume that you have already installed [mmdet](https://github.com/open-mmlab/mmdetection).
```shell
python demo/top_down_img_demo_with_mmdet.py \
${MMDET_CONFIG_FILE} ${MMDET_CHECKPOINT_FILE} \
${MMPOSE_CONFIG_FILE} ${MMPOSE_CHECKPOINT_FILE} \
--img-root ${IMG_ROOT} --img ${IMG_FILE} \
--out-img-root ${OUTPUT_DIR} \
[--show --device ${GPU_ID or CPU}] \
[--bbox-thr ${BBOX_SCORE_THR} --kpt-thr ${KPT_SCORE_THR}]
```
Examples:
```shell
python demo/top_down_img_demo_with_mmdet.py \
demo/mmdetection_cfg/faster_rcnn_r50_fpn_coco.py \
https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
configs/wholebody/2d_kpt_sview_rgb_img/topdown_heatmap/coco-wholebody/hrnet_w48_coco_wholebody_384x288_dark_plus.py \
https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w48_coco_wholebody_384x288_dark-f5726563_20200918.pth \
--img-root tests/data/coco/ \
--img 000000196141.jpg \
--out-img-root vis_results
```
### 2D Human Whole-Body Pose Top-Down Video Demo
We also provide a video demo to illustrate the results.
Assume that you have already installed [mmdet](https://github.com/open-mmlab/mmdetection).
```shell
python demo/top_down_video_demo_with_mmdet.py \
${MMDET_CONFIG_FILE} ${MMDET_CHECKPOINT_FILE} \
${MMPOSE_CONFIG_FILE} ${MMPOSE_CHECKPOINT_FILE} \
--video-path ${VIDEO_FILE} \
--out-video-root ${OUTPUT_VIDEO_ROOT} \
[--show --device ${GPU_ID or CPU}] \
[--bbox-thr ${BBOX_SCORE_THR} --kpt-thr ${KPT_SCORE_THR}]
```
Examples:
```shell
python demo/top_down_video_demo_with_mmdet.py \
demo/mmdetection_cfg/faster_rcnn_r50_fpn_coco.py \
https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
configs/wholebody/2d_kpt_sview_rgb_img/topdown_heatmap/coco-wholebody/hrnet_w48_coco_wholebody_384x288_dark_plus.py \
https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w48_coco_wholebody_384x288_dark-f5726563_20200918.pth \
--video-path https://user-images.githubusercontent.com/87690686/137440639-fb08603d-9a35-474e-b65f-46b5c06b68d6.mp4 \
--out-video-root vis_results
```
### Speed Up Inference
Some tips to speed up MMPose inference:
For top-down models, try to edit the config file. For example,
1. set `flip_test=False` in [pose_hrnet_w48_dark+](https://github.com/open-mmlab/mmpose/tree/e1ec589884235bee875c89102170439a991f8450/configs/wholebody/darkpose/coco-wholebody/hrnet_w48_coco_wholebody_384x288_dark_plus.py#L80).
1. set `post_process='default'` in [pose_hrnet_w48_dark+](https://github.com/open-mmlab/mmpose/tree/e1ec589884235bee875c89102170439a991f8450/configs/wholebody/darkpose/coco-wholebody/hrnet_w48_coco_wholebody_384x288_dark_plus.py#L81).
1. use faster human bounding box detector, see [MMDetection](https://mmdetection.readthedocs.io/en/latest/model_zoo.html).
|