File size: 9,425 Bytes
d7a991a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import os

import numpy as np
import torch
from numpy.testing import assert_array_almost_equal

from mmpose.datasets.pipelines import (Collect, IUVToTensor, LoadImageFromFile,
                                       LoadIUVFromFile, MeshAffine,
                                       MeshGetRandomScaleRotation,
                                       MeshRandomChannelNoise, MeshRandomFlip,
                                       NormalizeTensor, ToTensor)


def _check_keys_contain(result_keys, target_keys):
    """Check if all elements in target_keys is in result_keys."""
    return set(target_keys).issubset(set(result_keys))


def _check_flip(origin_imgs, result_imgs):
    """Check if the origin_imgs are flipped correctly."""
    h, w, c = origin_imgs.shape
    for i in range(h):
        for j in range(w):
            for k in range(c):
                if result_imgs[i, j, k] != origin_imgs[i, w - 1 - j, k]:
                    return False
    return True


def _check_rot90(origin_imgs, result_imgs):
    if origin_imgs.shape[0] == result_imgs.shape[1] and \
            origin_imgs.shape[1] == result_imgs.shape[0]:
        return True
    else:
        return False


def _check_normalize(origin_imgs, result_imgs, norm_cfg):
    """Check if the origin_imgs are normalized correctly into result_imgs in a
    given norm_cfg."""
    target_imgs = result_imgs.copy()
    for i in range(3):
        target_imgs[i] *= norm_cfg['std'][i]
        target_imgs[i] += norm_cfg['mean'][i]
    assert_array_almost_equal(origin_imgs, target_imgs, decimal=4)


def _box2cs(box, image_size):
    x, y, w, h = box[:4]

    aspect_ratio = 1. * image_size[0] / image_size[1]
    center = np.zeros((2), dtype=np.float32)
    center[0] = x + w * 0.5
    center[1] = y + h * 0.5

    if w > aspect_ratio * h:
        h = w * 1.0 / aspect_ratio
    elif w < aspect_ratio * h:
        w = h * aspect_ratio
    scale = np.array([w * 1.0 / 200.0, h * 1.0 / 200.0], dtype=np.float32)
    scale = scale * 1.25
    return center, scale


def _load_test_data():
    data_cfg = dict(
        image_size=[256, 256],
        iuv_size=[64, 64],
        num_joints=24,
        use_IUV=True,
        uv_type='BF')
    ann_file = 'tests/data/h36m/test_h36m.npz'
    img_prefix = 'tests/data/h36m'
    index = 0

    ann_info = dict(image_size=np.array(data_cfg['image_size']))
    ann_info['iuv_size'] = np.array(data_cfg['iuv_size'])
    ann_info['num_joints'] = data_cfg['num_joints']
    ann_info['flip_pairs'] = [[0, 5], [1, 4], [2, 3], [6, 11], [7, 10], [8, 9],
                              [20, 21], [22, 23]]
    ann_info['use_different_joint_weights'] = False
    ann_info['joint_weights'] = \
        np.ones(ann_info['num_joints'], dtype=np.float32
                ).reshape(ann_info['num_joints'], 1)
    ann_info['uv_type'] = data_cfg['uv_type']
    ann_info['use_IUV'] = data_cfg['use_IUV']
    uv_type = ann_info['uv_type']
    iuv_prefix = os.path.join(img_prefix, f'{uv_type}_IUV_gt')

    ann_data = np.load(ann_file)

    results = dict(ann_info=ann_info)
    results['rotation'] = 0
    results['image_file'] = os.path.join(img_prefix,
                                         ann_data['imgname'][index])
    scale = ann_data['scale'][index]
    results['scale'] = np.array([scale, scale]).astype(np.float32)
    results['center'] = ann_data['center'][index].astype(np.float32)

    # Get gt 2D joints, if available
    if 'part' in ann_data.keys():
        keypoints = ann_data['part'][index].astype(np.float32)
        results['joints_2d'] = keypoints[:, :2]
        results['joints_2d_visible'] = keypoints[:, -1][:, np.newaxis]
    else:
        results['joints_2d'] = np.zeros((24, 2), dtype=np.float32)
        results['joints_2d_visible'] = np.zeros((24, 1), dtype=np.float32)

    # Get gt 3D joints, if available
    if 'S' in ann_data.keys():
        joints_3d = ann_data['S'][index].astype(np.float32)
        results['joints_3d'] = joints_3d[:, :3]
        results['joints_3d_visible'] = joints_3d[:, -1][:, np.newaxis]
    else:
        results['joints_3d'] = np.zeros((24, 3), dtype=np.float32)
        results['joints_3d_visible'] = np.zeros((24, 1), dtype=np.float32)

    # Get gt SMPL parameters, if available
    if 'pose' in ann_data.keys() and 'shape' in ann_data.keys():
        results['pose'] = ann_data['pose'][index].astype(np.float32)
        results['beta'] = ann_data['shape'][index].astype(np.float32)
        results['has_smpl'] = 1
    else:
        results['pose'] = np.zeros(72, dtype=np.float32)
        results['beta'] = np.zeros(10, dtype=np.float32)
        results['has_smpl'] = 0

    # Get gender data, if available
    if 'gender' in ann_data.keys():
        gender = ann_data['gender'][index]
        results['gender'] = 0 if str(gender) == 'm' else 1
    else:
        results['gender'] = -1

    # Get IUV image, if available
    if 'iuv_names' in ann_data.keys():
        results['iuv_file'] = os.path.join(iuv_prefix,
                                           ann_data['iuv_names'][index])
        results['has_iuv'] = results['has_smpl']
    else:
        results['iuv_file'] = ''
        results['has_iuv'] = 0

    return copy.deepcopy(results)


def test_mesh_pipeline():
    # load data
    results = _load_test_data()

    # data_prefix = 'tests/data/coco/'
    # ann_file = osp.join(data_prefix, 'test_coco.json')
    # coco = COCO(ann_file)
    #
    # results = dict(image_file=osp.join(data_prefix, '000000000785.jpg'))

    # test loading image
    transform = LoadImageFromFile()
    results = transform(copy.deepcopy(results))
    assert results['img'].shape == (1002, 1000, 3)

    # test loading densepose IUV image without GT iuv image
    transform = LoadIUVFromFile()
    results_no_iuv = copy.deepcopy(results)
    results_no_iuv['has_iuv'] = 0
    results_no_iuv = transform(results_no_iuv)
    assert results_no_iuv['iuv'] is None

    # test loading densepose IUV image
    results = transform(results)
    assert results['iuv'].shape == (1002, 1000, 3)
    assert results['iuv'][:, :, 0].max() <= 1

    # test flip
    random_flip = MeshRandomFlip(flip_prob=1.)
    results_flip = random_flip(copy.deepcopy(results))
    assert _check_flip(results['img'], results_flip['img'])
    flip_iuv = results_flip['iuv']
    flip_iuv[:, :, 1] = 255 - flip_iuv[:, :, 1]
    assert _check_flip(results['iuv'], flip_iuv)
    results = results_flip

    # test flip without IUV image
    results_no_iuv = random_flip(copy.deepcopy(results_no_iuv))
    assert results_no_iuv['iuv'] is None

    # test random scale and rotation
    random_scale_rotation = MeshGetRandomScaleRotation()
    results = random_scale_rotation(results)

    # test affine
    affine_transform = MeshAffine()
    results_affine = affine_transform(copy.deepcopy(results))
    assert results_affine['img'].shape == (256, 256, 3)
    assert results_affine['iuv'].shape == (64, 64, 3)
    results = results_affine

    # test affine without IUV image
    results_no_iuv['rotation'] = 30
    results_no_iuv = affine_transform(copy.deepcopy(results_no_iuv))
    assert results_no_iuv['iuv'] is None

    # test channel noise
    random_noise = MeshRandomChannelNoise()
    results_noise = random_noise(copy.deepcopy(results))
    results = results_noise

    # transfer image to tensor
    to_tensor = ToTensor()
    results_tensor = to_tensor(copy.deepcopy(results))
    assert isinstance(results_tensor['img'], torch.Tensor)
    assert results_tensor['img'].shape == torch.Size([3, 256, 256])

    # transfer IUV image to tensor
    iuv_to_tensor = IUVToTensor()
    results_tensor = iuv_to_tensor(results_tensor)
    assert isinstance(results_tensor['part_index'], torch.LongTensor)
    assert results_tensor['part_index'].shape == torch.Size([1, 64, 64])
    max_I = results_tensor['part_index'].max().item()
    assert (max_I == 0 or max_I == 1)
    assert isinstance(results_tensor['uv_coordinates'], torch.FloatTensor)
    assert results_tensor['uv_coordinates'].shape == torch.Size([2, 64, 64])

    # transfer IUV image to tensor without GT IUV image
    results_no_iuv = iuv_to_tensor(results_no_iuv)
    assert isinstance(results_no_iuv['part_index'], torch.LongTensor)
    assert results_no_iuv['part_index'].shape == torch.Size([1, 64, 64])
    max_I = results_no_iuv['part_index'].max().item()
    assert (max_I == 0)
    assert isinstance(results_no_iuv['uv_coordinates'], torch.FloatTensor)
    assert results_no_iuv['uv_coordinates'].shape == torch.Size([2, 64, 64])

    # test norm
    norm_cfg = {}
    norm_cfg['mean'] = [0.485, 0.456, 0.406]
    norm_cfg['std'] = [0.229, 0.224, 0.225]
    normalize = NormalizeTensor(mean=norm_cfg['mean'], std=norm_cfg['std'])

    results_normalize = normalize(copy.deepcopy(results_tensor))
    _check_normalize(results_tensor['img'].data.numpy(),
                     results_normalize['img'].data.numpy(), norm_cfg)

    # test collect
    collect = Collect(
        keys=[
            'img', 'joints_2d', 'joints_2d_visible', 'joints_3d',
            'joints_3d_visible', 'pose', 'beta', 'part_index', 'uv_coordinates'
        ],
        meta_keys=['image_file', 'center', 'scale', 'rotation', 'iuv_file'])
    results_final = collect(results_normalize)

    assert 'img_size' not in results_final['img_metas'].data
    assert 'image_file' in results_final['img_metas'].data