|
import io |
|
from typing import Any, Dict, List, Optional, Union |
|
|
|
from .constants import INFERENCE_ENDPOINT |
|
from .hf_api import HfApi |
|
from .utils import build_hf_headers, get_session, is_pillow_available, logging, validate_hf_hub_args |
|
from .utils._deprecation import _deprecate_method |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
ALL_TASKS = [ |
|
|
|
"text-classification", |
|
"token-classification", |
|
"table-question-answering", |
|
"question-answering", |
|
"zero-shot-classification", |
|
"translation", |
|
"summarization", |
|
"conversational", |
|
"feature-extraction", |
|
"text-generation", |
|
"text2text-generation", |
|
"fill-mask", |
|
"sentence-similarity", |
|
|
|
"text-to-speech", |
|
"automatic-speech-recognition", |
|
"audio-to-audio", |
|
"audio-classification", |
|
"voice-activity-detection", |
|
|
|
"image-classification", |
|
"object-detection", |
|
"image-segmentation", |
|
"text-to-image", |
|
"image-to-image", |
|
|
|
"tabular-classification", |
|
"tabular-regression", |
|
] |
|
|
|
|
|
class InferenceApi: |
|
"""Client to configure requests and make calls to the HuggingFace Inference API. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from huggingface_hub.inference_api import InferenceApi |
|
|
|
>>> # Mask-fill example |
|
>>> inference = InferenceApi("bert-base-uncased") |
|
>>> inference(inputs="The goal of life is [MASK].") |
|
[{'sequence': 'the goal of life is life.', 'score': 0.10933292657136917, 'token': 2166, 'token_str': 'life'}] |
|
|
|
>>> # Question Answering example |
|
>>> inference = InferenceApi("deepset/roberta-base-squad2") |
|
>>> inputs = { |
|
... "question": "What's my name?", |
|
... "context": "My name is Clara and I live in Berkeley.", |
|
... } |
|
>>> inference(inputs) |
|
{'score': 0.9326569437980652, 'start': 11, 'end': 16, 'answer': 'Clara'} |
|
|
|
>>> # Zero-shot example |
|
>>> inference = InferenceApi("typeform/distilbert-base-uncased-mnli") |
|
>>> inputs = "Hi, I recently bought a device from your company but it is not working as advertised and I would like to get reimbursed!" |
|
>>> params = {"candidate_labels": ["refund", "legal", "faq"]} |
|
>>> inference(inputs, params) |
|
{'sequence': 'Hi, I recently bought a device from your company but it is not working as advertised and I would like to get reimbursed!', 'labels': ['refund', 'faq', 'legal'], 'scores': [0.9378499388694763, 0.04914155602455139, 0.013008488342165947]} |
|
|
|
>>> # Overriding configured task |
|
>>> inference = InferenceApi("bert-base-uncased", task="feature-extraction") |
|
|
|
>>> # Text-to-image |
|
>>> inference = InferenceApi("stabilityai/stable-diffusion-2-1") |
|
>>> inference("cat") |
|
<PIL.PngImagePlugin.PngImageFile image (...)> |
|
|
|
>>> # Return as raw response to parse the output yourself |
|
>>> inference = InferenceApi("mio/amadeus") |
|
>>> response = inference("hello world", raw_response=True) |
|
>>> response.headers |
|
{"Content-Type": "audio/flac", ...} |
|
>>> response.content # raw bytes from server |
|
b'(...)' |
|
``` |
|
""" |
|
|
|
@validate_hf_hub_args |
|
@_deprecate_method( |
|
version="1.0", |
|
message=( |
|
"`InferenceApi` client is deprecated in favor of the more feature-complete `InferenceClient`. Check out" |
|
" this guide to learn how to convert your script to use it:" |
|
" https://huggingface.co/docs/huggingface_hub/guides/inference#legacy-inferenceapi-client." |
|
), |
|
) |
|
def __init__( |
|
self, |
|
repo_id: str, |
|
task: Optional[str] = None, |
|
token: Optional[str] = None, |
|
gpu: bool = False, |
|
): |
|
"""Inits headers and API call information. |
|
|
|
Args: |
|
repo_id (``str``): |
|
Id of repository (e.g. `user/bert-base-uncased`). |
|
task (``str``, `optional`, defaults ``None``): |
|
Whether to force a task instead of using task specified in the |
|
repository. |
|
token (`str`, `optional`): |
|
The API token to use as HTTP bearer authorization. This is not |
|
the authentication token. You can find the token in |
|
https://huggingface.co/settings/token. Alternatively, you can |
|
find both your organizations and personal API tokens using |
|
`HfApi().whoami(token)`. |
|
gpu (`bool`, `optional`, defaults `False`): |
|
Whether to use GPU instead of CPU for inference(requires Startup |
|
plan at least). |
|
""" |
|
self.options = {"wait_for_model": True, "use_gpu": gpu} |
|
self.headers = build_hf_headers(token=token) |
|
|
|
|
|
model_info = HfApi(token=token).model_info(repo_id=repo_id) |
|
if not model_info.pipeline_tag and not task: |
|
raise ValueError( |
|
"Task not specified in the repository. Please add it to the model card" |
|
" using pipeline_tag" |
|
" (https://huggingface.co/docs#how-is-a-models-type-of-inference-api-and-widget-determined)" |
|
) |
|
|
|
if task and task != model_info.pipeline_tag: |
|
if task not in ALL_TASKS: |
|
raise ValueError(f"Invalid task {task}. Make sure it's valid.") |
|
|
|
logger.warning( |
|
"You're using a different task than the one specified in the" |
|
" repository. Be sure to know what you're doing :)" |
|
) |
|
self.task = task |
|
else: |
|
assert model_info.pipeline_tag is not None, "Pipeline tag cannot be None" |
|
self.task = model_info.pipeline_tag |
|
|
|
self.api_url = f"{INFERENCE_ENDPOINT}/pipeline/{self.task}/{repo_id}" |
|
|
|
def __repr__(self): |
|
|
|
return f"InferenceAPI(api_url='{self.api_url}', task='{self.task}', options={self.options})" |
|
|
|
def __call__( |
|
self, |
|
inputs: Optional[Union[str, Dict, List[str], List[List[str]]]] = None, |
|
params: Optional[Dict] = None, |
|
data: Optional[bytes] = None, |
|
raw_response: bool = False, |
|
) -> Any: |
|
"""Make a call to the Inference API. |
|
|
|
Args: |
|
inputs (`str` or `Dict` or `List[str]` or `List[List[str]]`, *optional*): |
|
Inputs for the prediction. |
|
params (`Dict`, *optional*): |
|
Additional parameters for the models. Will be sent as `parameters` in the |
|
payload. |
|
data (`bytes`, *optional*): |
|
Bytes content of the request. In this case, leave `inputs` and `params` empty. |
|
raw_response (`bool`, defaults to `False`): |
|
If `True`, the raw `Response` object is returned. You can parse its content |
|
as preferred. By default, the content is parsed into a more practical format |
|
(json dictionary or PIL Image for example). |
|
""" |
|
|
|
payload: Dict[str, Any] = { |
|
"options": self.options, |
|
} |
|
if inputs: |
|
payload["inputs"] = inputs |
|
if params: |
|
payload["parameters"] = params |
|
|
|
|
|
response = get_session().post(self.api_url, headers=self.headers, json=payload, data=data) |
|
|
|
|
|
if raw_response: |
|
return response |
|
|
|
|
|
content_type = response.headers.get("Content-Type") or "" |
|
if content_type.startswith("image"): |
|
if not is_pillow_available(): |
|
raise ImportError( |
|
f"Task '{self.task}' returned as image but Pillow is not installed." |
|
" Please install it (`pip install Pillow`) or pass" |
|
" `raw_response=True` to get the raw `Response` object and parse" |
|
" the image by yourself." |
|
) |
|
|
|
from PIL import Image |
|
|
|
return Image.open(io.BytesIO(response.content)) |
|
elif content_type == "application/json": |
|
return response.json() |
|
else: |
|
raise NotImplementedError( |
|
f"{content_type} output type is not implemented yet. You can pass" |
|
" `raw_response=True` to get the raw `Response` object and parse the" |
|
" output by yourself." |
|
) |
|
|