File size: 12,535 Bytes
da47978 1cd14fa da47978 1cd14fa da47978 1cd14fa da47978 1cd14fa da47978 1cd14fa da47978 1cd14fa da47978 1cd14fa da47978 1cd14fa da47978 1cd14fa da47978 1cd14fa da47978 1cd14fa da47978 1cd14fa da47978 1cd14fa da47978 1cd14fa da47978 1cd14fa da47978 1cd14fa da47978 1cd14fa da47978 1cd14fa da47978 1cd14fa da47978 1cd14fa da47978 e7fc396 da47978 1cd14fa da47978 e7fc396 da47978 e7fc396 da47978 e7fc396 da47978 e7fc396 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
import tempfile
import time
from collections.abc import Sequence
from typing import Any, cast
import os
from huggingface_hub import login
import gradio as gr
import numpy as np
import pillow_heif
import spaces
import torch
from gradio_image_annotation import image_annotator
from gradio_imageslider import ImageSlider
from PIL import Image
from pymatting.foreground.estimate_foreground_ml import estimate_foreground_ml
from refiners.fluxion.utils import no_grad
from refiners.solutions import BoxSegmenter
from transformers import GroundingDinoForObjectDetection, GroundingDinoProcessor
from diffusers import FluxPipeline
BoundingBox = tuple[int, int, int, int]
# μ΄κΈ°ν λ° μ€μ
pillow_heif.register_heif_opener()
pillow_heif.register_avif_opener()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# HF ν ν° μ€μ
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
raise ValueError("Please set the HF_TOKEN environment variable")
try:
login(token=HF_TOKEN)
except Exception as e:
raise ValueError(f"Failed to login to Hugging Face: {str(e)}")
# λͺ¨λΈ μ΄κΈ°ν
segmenter = BoxSegmenter(device="cpu")
segmenter.device = device
segmenter.model = segmenter.model.to(device=segmenter.device)
gd_model_path = "IDEA-Research/grounding-dino-base"
gd_processor = GroundingDinoProcessor.from_pretrained(gd_model_path)
gd_model = GroundingDinoForObjectDetection.from_pretrained(gd_model_path, torch_dtype=torch.float32)
gd_model = gd_model.to(device=device)
assert isinstance(gd_model, GroundingDinoForObjectDetection)
# FLUX νμ΄νλΌμΈ μ΄κΈ°ν
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.bfloat16,
use_auth_token=HF_TOKEN
)
pipe.load_lora_weights(
hf_hub_download(
"ByteDance/Hyper-SD",
"Hyper-FLUX.1-dev-8steps-lora.safetensors",
use_auth_token=HF_TOKEN
)
)
pipe.fuse_lora(lora_scale=0.125)
pipe.to(device="cuda", dtype=torch.bfloat16)
def bbox_union(bboxes: Sequence[list[int]]) -> BoundingBox | None:
if not bboxes:
return None
for bbox in bboxes:
assert len(bbox) == 4
assert all(isinstance(x, int) for x in bbox)
return (
min(bbox[0] for bbox in bboxes),
min(bbox[1] for bbox in bboxes),
max(bbox[2] for bbox in bboxes),
max(bbox[3] for bbox in bboxes),
)
def corners_to_pixels_format(bboxes: torch.Tensor, width: int, height: int) -> torch.Tensor:
x1, y1, x2, y2 = bboxes.round().to(torch.int32).unbind(-1)
return torch.stack((x1.clamp_(0, width), y1.clamp_(0, height), x2.clamp_(0, width), y2.clamp_(0, height)), dim=-1)
def gd_detect(img: Image.Image, prompt: str) -> BoundingBox | None:
inputs = gd_processor(images=img, text=f"{prompt}.", return_tensors="pt").to(device=device)
with no_grad():
outputs = gd_model(**inputs)
width, height = img.size
results: dict[str, Any] = gd_processor.post_process_grounded_object_detection(
outputs,
inputs["input_ids"],
target_sizes=[(height, width)],
)[0]
assert "boxes" in results and isinstance(results["boxes"], torch.Tensor)
bboxes = corners_to_pixels_format(results["boxes"].cpu(), width, height)
return bbox_union(bboxes.numpy().tolist())
def apply_mask(img: Image.Image, mask_img: Image.Image, defringe: bool = True) -> Image.Image:
assert img.size == mask_img.size
img = img.convert("RGB")
mask_img = mask_img.convert("L")
if defringe:
rgb, alpha = np.asarray(img) / 255.0, np.asarray(mask_img) / 255.0
foreground = cast(np.ndarray[Any, np.dtype[np.uint8]], estimate_foreground_ml(rgb, alpha))
img = Image.fromarray((foreground * 255).astype("uint8"))
result = Image.new("RGBA", img.size)
result.paste(img, (0, 0), mask_img)
return result
def generate_background(prompt: str, width: int, height: int) -> Image.Image:
"""λ°°κ²½ μ΄λ―Έμ§ μμ± ν¨μ"""
try:
with timer("Background generation"):
image = pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=8,
guidance_scale=4.0,
).images[0]
return image
except Exception as e:
raise gr.Error(f"Background generation failed: {str(e)}")
def combine_with_background(foreground: Image.Image, background: Image.Image) -> Image.Image:
"""μ κ²½κ³Ό λ°°κ²½ ν©μ± ν¨μ"""
background = background.resize(foreground.size)
return Image.alpha_composite(background.convert('RGBA'), foreground)
@spaces.GPU
def _gpu_process(img: Image.Image, prompt: str | BoundingBox | None) -> tuple[Image.Image, BoundingBox | None, list[str]]:
time_log: list[str] = []
if isinstance(prompt, str):
t0 = time.time()
bbox = gd_detect(img, prompt)
time_log.append(f"detect: {time.time() - t0}")
if not bbox:
print(time_log[0])
raise gr.Error("No object detected")
else:
bbox = prompt
t0 = time.time()
mask = segmenter(img, bbox)
time_log.append(f"segment: {time.time() - t0}")
return mask, bbox, time_log
def _process(img: Image.Image, prompt: str | BoundingBox | None, bg_prompt: str | None = None) -> tuple[tuple[Image.Image, Image.Image, Image.Image], gr.DownloadButton]:
if img.width > 2048 or img.height > 2048:
orig_res = max(img.width, img.height)
img.thumbnail((2048, 2048))
if isinstance(prompt, tuple):
x0, y0, x1, y1 = (int(x * 2048 / orig_res) for x in prompt)
prompt = (x0, y0, x1, y1)
mask, bbox, time_log = _gpu_process(img, prompt)
masked_alpha = apply_mask(img, mask, defringe=True)
if bg_prompt:
try:
background = generate_background(bg_prompt, img.width, img.height)
combined = combine_with_background(masked_alpha, background)
except Exception as e:
raise gr.Error(f"Background processing failed: {str(e)}")
else:
combined = Image.alpha_composite(Image.new("RGBA", masked_alpha.size, "white"), masked_alpha)
thresholded = mask.point(lambda p: 255 if p > 10 else 0)
bbox = thresholded.getbbox()
to_dl = masked_alpha.crop(bbox)
temp = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
to_dl.save(temp, format="PNG")
temp.close()
return (img, combined, masked_alpha), gr.DownloadButton(value=temp.name, interactive=True)
def process_bbox(prompts: dict[str, Any]) -> tuple[tuple[Image.Image, Image.Image], gr.DownloadButton]:
assert isinstance(img := prompts["image"], Image.Image)
assert isinstance(boxes := prompts["boxes"], list)
if len(boxes) == 1:
assert isinstance(box := boxes[0], dict)
bbox = tuple(box[k] for k in ["xmin", "ymin", "xmax", "ymax"])
else:
assert len(boxes) == 0
bbox = None
return _process(img, bbox)
def on_change_bbox(prompts: dict[str, Any] | None):
return gr.update(interactive=prompts is not None)
def process_prompt(img: Image.Image, prompt: str, bg_prompt: str | None = None) -> tuple[tuple[Image.Image, Image.Image], gr.DownloadButton]:
return _process(img, prompt, bg_prompt)
def on_change_prompt(img: Image.Image | None, prompt: str | None, bg_prompt: str | None = None):
return gr.update(interactive=bool(img and prompt))
# CSS μ€νμΌ μ μ
css = """
footer {display: none}
.main-title {
text-align: center;
margin: 2em 0;
}
.main-title h1 {
color: #2196F3;
font-size: 2.5em;
}
.container {
max-width: 1200px;
margin: auto;
padding: 20px;
}
"""
# Gradio UI
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
gr.HTML("""
<div class="main-title">
<h1>π¨ Advanced Image Object Extractor</h1>
<p>Extract objects from images using text prompts or bounding boxes</p>
</div>
""")
with gr.Tabs() as tabs:
with gr.Tab("β¨ Extract by Text", id="tab_prompt"):
with gr.Row(equal_height=True):
with gr.Column(scale=1, min_width=400):
gr.HTML("<h3>π₯ Input Section</h3>")
iimg = gr.Image(
type="pil",
label="Upload Image"
)
with gr.Group():
prompt = gr.Textbox(
label="π― Object to Extract",
placeholder="Enter what you want to extract..."
)
bg_prompt = gr.Textbox(
label="πΌοΈ Background Generation Prompt (optional)",
placeholder="Describe the background you want..."
)
btn = gr.Button(
"π Process Image",
variant="primary",
interactive=False
)
with gr.Column(scale=1, min_width=400):
gr.HTML("<h3>π€ Output Section</h3>")
oimg = ImageSlider(
label="Results Preview",
show_download_button=False
)
dlbt = gr.DownloadButton(
"πΎ Download Result",
interactive=False
)
with gr.Accordion("π Examples", open=False):
examples = [
["examples/text.jpg", "text", "white background"],
["examples/black-lamp.jpg", "black lamp", "minimalist interior"]
]
ex = gr.Examples(
examples=examples,
inputs=[iimg, prompt, bg_prompt],
outputs=[oimg, dlbt],
fn=process_prompt,
cache_examples=True
)
with gr.Tab("π Extract by Box", id="tab_bb"):
with gr.Row(equal_height=True):
with gr.Column(scale=1, min_width=400):
gr.HTML("<h3>π₯ Input Section</h3>")
annotator = image_annotator(
image_type="pil",
disable_edit_boxes=True,
show_download_button=False,
show_share_button=False,
single_box=True,
label="Draw Box Around Object"
)
btn_bb = gr.Button(
"βοΈ Extract Selection",
variant="primary",
interactive=False
)
with gr.Column(scale=1, min_width=400):
gr.HTML("<h3>π€ Output Section</h3>")
oimg_bb = ImageSlider(
label="Results Preview",
show_download_button=False
)
dlbt_bb = gr.DownloadButton(
"πΎ Download Result",
interactive=False
)
with gr.Accordion("π Examples", open=False):
examples_bb = [
["examples/text.jpg", [{"xmin": 51, "ymin": 511, "xmax": 639, "ymax": 1255}]],
["examples/black-lamp.jpg", [{"xmin": 88, "ymin": 148, "xmax": 700, "ymax": 1414}]]
]
ex_bb = gr.Examples(
examples=examples_bb,
inputs=[annotator],
outputs=[oimg_bb, dlbt_bb],
fn=process_bbox,
cache_examples=True
)
# Event handlers
btn.add(oimg)
for inp in [iimg, prompt]:
inp.change(
fn=on_change_prompt,
inputs=[iimg, prompt, bg_prompt],
outputs=[btn],
)
btn.click(
fn=process_prompt,
inputs=[iimg, prompt, bg_prompt],
outputs=[oimg, dlbt],
api_name=False,
)
btn_bb.add(oimg_bb)
annotator.change(
fn=on_change_bbox,
inputs=[annotator],
outputs=[btn_bb],
)
btn_bb.click(
fn=process_bbox,
inputs=[annotator],
outputs=[oimg_bb, dlbt_bb],
api_name=False,
)
demo.queue(max_size=30, api_open=False)
demo.launch(
show_api=False,
share=False,
server_name="0.0.0.0",
server_port=7860,
show_error=True
) |