|
from typing import Any |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
import comfy.ops |
|
from comfy.ldm.modules.diffusionmodules.mmdit import Mlp, TimestepEmbedder, PatchEmbed, RMSNorm |
|
from comfy.ldm.modules.diffusionmodules.util import timestep_embedding |
|
from torch.utils import checkpoint |
|
|
|
from .attn_layers import Attention, CrossAttention |
|
from .poolers import AttentionPool |
|
from .posemb_layers import get_2d_rotary_pos_embed, get_fill_resize_and_crop |
|
|
|
def calc_rope(x, patch_size, head_size): |
|
th = (x.shape[2] + (patch_size // 2)) // patch_size |
|
tw = (x.shape[3] + (patch_size // 2)) // patch_size |
|
base_size = 512 // 8 // patch_size |
|
start, stop = get_fill_resize_and_crop((th, tw), base_size) |
|
sub_args = [start, stop, (th, tw)] |
|
|
|
rope = get_2d_rotary_pos_embed(head_size, *sub_args) |
|
rope = (rope[0].to(x), rope[1].to(x)) |
|
return rope |
|
|
|
|
|
def modulate(x, shift, scale): |
|
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) |
|
|
|
|
|
class HunYuanDiTBlock(nn.Module): |
|
""" |
|
A HunYuanDiT block with `add` conditioning. |
|
""" |
|
def __init__(self, |
|
hidden_size, |
|
c_emb_size, |
|
num_heads, |
|
mlp_ratio=4.0, |
|
text_states_dim=1024, |
|
qk_norm=False, |
|
norm_type="layer", |
|
skip=False, |
|
attn_precision=None, |
|
dtype=None, |
|
device=None, |
|
operations=None, |
|
): |
|
super().__init__() |
|
use_ele_affine = True |
|
|
|
if norm_type == "layer": |
|
norm_layer = operations.LayerNorm |
|
elif norm_type == "rms": |
|
norm_layer = RMSNorm |
|
else: |
|
raise ValueError(f"Unknown norm_type: {norm_type}") |
|
|
|
|
|
self.norm1 = norm_layer(hidden_size, elementwise_affine=use_ele_affine, eps=1e-6, dtype=dtype, device=device) |
|
self.attn1 = Attention(hidden_size, num_heads=num_heads, qkv_bias=True, qk_norm=qk_norm, attn_precision=attn_precision, dtype=dtype, device=device, operations=operations) |
|
|
|
|
|
self.norm2 = norm_layer(hidden_size, elementwise_affine=use_ele_affine, eps=1e-6, dtype=dtype, device=device) |
|
mlp_hidden_dim = int(hidden_size * mlp_ratio) |
|
approx_gelu = lambda: nn.GELU(approximate="tanh") |
|
self.mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0, dtype=dtype, device=device, operations=operations) |
|
|
|
|
|
|
|
self.default_modulation = nn.Sequential( |
|
nn.SiLU(), |
|
operations.Linear(c_emb_size, hidden_size, bias=True, dtype=dtype, device=device) |
|
) |
|
|
|
|
|
self.attn2 = CrossAttention(hidden_size, text_states_dim, num_heads=num_heads, qkv_bias=True, |
|
qk_norm=qk_norm, attn_precision=attn_precision, dtype=dtype, device=device, operations=operations) |
|
self.norm3 = norm_layer(hidden_size, elementwise_affine=True, eps=1e-6, dtype=dtype, device=device) |
|
|
|
|
|
if skip: |
|
self.skip_norm = norm_layer(2 * hidden_size, elementwise_affine=True, eps=1e-6, dtype=dtype, device=device) |
|
self.skip_linear = operations.Linear(2 * hidden_size, hidden_size, dtype=dtype, device=device) |
|
else: |
|
self.skip_linear = None |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def _forward(self, x, c=None, text_states=None, freq_cis_img=None, skip=None): |
|
|
|
if self.skip_linear is not None: |
|
cat = torch.cat([x, skip], dim=-1) |
|
if cat.dtype != x.dtype: |
|
cat = cat.to(x.dtype) |
|
cat = self.skip_norm(cat) |
|
x = self.skip_linear(cat) |
|
|
|
|
|
shift_msa = self.default_modulation(c).unsqueeze(dim=1) |
|
attn_inputs = ( |
|
self.norm1(x) + shift_msa, freq_cis_img, |
|
) |
|
x = x + self.attn1(*attn_inputs)[0] |
|
|
|
|
|
cross_inputs = ( |
|
self.norm3(x), text_states, freq_cis_img |
|
) |
|
x = x + self.attn2(*cross_inputs)[0] |
|
|
|
|
|
mlp_inputs = self.norm2(x) |
|
x = x + self.mlp(mlp_inputs) |
|
|
|
return x |
|
|
|
def forward(self, x, c=None, text_states=None, freq_cis_img=None, skip=None): |
|
if self.gradient_checkpointing and self.training: |
|
return checkpoint.checkpoint(self._forward, x, c, text_states, freq_cis_img, skip) |
|
return self._forward(x, c, text_states, freq_cis_img, skip) |
|
|
|
|
|
class FinalLayer(nn.Module): |
|
""" |
|
The final layer of HunYuanDiT. |
|
""" |
|
def __init__(self, final_hidden_size, c_emb_size, patch_size, out_channels, dtype=None, device=None, operations=None): |
|
super().__init__() |
|
self.norm_final = operations.LayerNorm(final_hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) |
|
self.linear = operations.Linear(final_hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device) |
|
self.adaLN_modulation = nn.Sequential( |
|
nn.SiLU(), |
|
operations.Linear(c_emb_size, 2 * final_hidden_size, bias=True, dtype=dtype, device=device) |
|
) |
|
|
|
def forward(self, x, c): |
|
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1) |
|
x = modulate(self.norm_final(x), shift, scale) |
|
x = self.linear(x) |
|
return x |
|
|
|
|
|
class HunYuanDiT(nn.Module): |
|
""" |
|
HunYuanDiT: Diffusion model with a Transformer backbone. |
|
|
|
Inherit ModelMixin and ConfigMixin to be compatible with the sampler StableDiffusionPipeline of diffusers. |
|
|
|
Inherit PeftAdapterMixin to be compatible with the PEFT training pipeline. |
|
|
|
Parameters |
|
---------- |
|
args: argparse.Namespace |
|
The arguments parsed by argparse. |
|
input_size: tuple |
|
The size of the input image. |
|
patch_size: int |
|
The size of the patch. |
|
in_channels: int |
|
The number of input channels. |
|
hidden_size: int |
|
The hidden size of the transformer backbone. |
|
depth: int |
|
The number of transformer blocks. |
|
num_heads: int |
|
The number of attention heads. |
|
mlp_ratio: float |
|
The ratio of the hidden size of the MLP in the transformer block. |
|
log_fn: callable |
|
The logging function. |
|
""" |
|
|
|
def __init__(self, |
|
input_size: tuple = 32, |
|
patch_size: int = 2, |
|
in_channels: int = 4, |
|
hidden_size: int = 1152, |
|
depth: int = 28, |
|
num_heads: int = 16, |
|
mlp_ratio: float = 4.0, |
|
text_states_dim = 1024, |
|
text_states_dim_t5 = 2048, |
|
text_len = 77, |
|
text_len_t5 = 256, |
|
qk_norm = True, |
|
size_cond = False, |
|
use_style_cond = False, |
|
learn_sigma = True, |
|
norm = "layer", |
|
log_fn: callable = print, |
|
attn_precision=None, |
|
dtype=None, |
|
device=None, |
|
operations=None, |
|
**kwargs, |
|
): |
|
super().__init__() |
|
self.log_fn = log_fn |
|
self.depth = depth |
|
self.learn_sigma = learn_sigma |
|
self.in_channels = in_channels |
|
self.out_channels = in_channels * 2 if learn_sigma else in_channels |
|
self.patch_size = patch_size |
|
self.num_heads = num_heads |
|
self.hidden_size = hidden_size |
|
self.text_states_dim = text_states_dim |
|
self.text_states_dim_t5 = text_states_dim_t5 |
|
self.text_len = text_len |
|
self.text_len_t5 = text_len_t5 |
|
self.size_cond = size_cond |
|
self.use_style_cond = use_style_cond |
|
self.norm = norm |
|
self.dtype = dtype |
|
|
|
|
|
|
|
self.mlp_t5 = nn.Sequential( |
|
operations.Linear(self.text_states_dim_t5, self.text_states_dim_t5 * 4, bias=True, dtype=dtype, device=device), |
|
nn.SiLU(), |
|
operations.Linear(self.text_states_dim_t5 * 4, self.text_states_dim, bias=True, dtype=dtype, device=device), |
|
) |
|
|
|
self.text_embedding_padding = nn.Parameter( |
|
torch.empty(self.text_len + self.text_len_t5, self.text_states_dim, dtype=dtype, device=device)) |
|
|
|
|
|
pooler_out_dim = 1024 |
|
self.pooler = AttentionPool(self.text_len_t5, self.text_states_dim_t5, num_heads=8, output_dim=pooler_out_dim, dtype=dtype, device=device, operations=operations) |
|
|
|
|
|
self.extra_in_dim = pooler_out_dim |
|
|
|
if self.size_cond: |
|
|
|
self.extra_in_dim += 6 * 256 |
|
|
|
if self.use_style_cond: |
|
|
|
self.style_embedder = operations.Embedding(1, hidden_size, dtype=dtype, device=device) |
|
self.extra_in_dim += hidden_size |
|
|
|
|
|
self.x_embedder = PatchEmbed(input_size, patch_size, in_channels, hidden_size, dtype=dtype, device=device, operations=operations) |
|
self.t_embedder = TimestepEmbedder(hidden_size, dtype=dtype, device=device, operations=operations) |
|
self.extra_embedder = nn.Sequential( |
|
operations.Linear(self.extra_in_dim, hidden_size * 4, dtype=dtype, device=device), |
|
nn.SiLU(), |
|
operations.Linear(hidden_size * 4, hidden_size, bias=True, dtype=dtype, device=device), |
|
) |
|
|
|
|
|
num_patches = self.x_embedder.num_patches |
|
|
|
|
|
self.blocks = nn.ModuleList([ |
|
HunYuanDiTBlock(hidden_size=hidden_size, |
|
c_emb_size=hidden_size, |
|
num_heads=num_heads, |
|
mlp_ratio=mlp_ratio, |
|
text_states_dim=self.text_states_dim, |
|
qk_norm=qk_norm, |
|
norm_type=self.norm, |
|
skip=layer > depth // 2, |
|
attn_precision=attn_precision, |
|
dtype=dtype, |
|
device=device, |
|
operations=operations, |
|
) |
|
for layer in range(depth) |
|
]) |
|
|
|
self.final_layer = FinalLayer(hidden_size, hidden_size, patch_size, self.out_channels, dtype=dtype, device=device, operations=operations) |
|
self.unpatchify_channels = self.out_channels |
|
|
|
|
|
|
|
def forward(self, |
|
x, |
|
t, |
|
context, |
|
text_embedding_mask=None, |
|
encoder_hidden_states_t5=None, |
|
text_embedding_mask_t5=None, |
|
image_meta_size=None, |
|
style=None, |
|
return_dict=False, |
|
control=None, |
|
transformer_options={}, |
|
): |
|
""" |
|
Forward pass of the encoder. |
|
|
|
Parameters |
|
---------- |
|
x: torch.Tensor |
|
(B, D, H, W) |
|
t: torch.Tensor |
|
(B) |
|
encoder_hidden_states: torch.Tensor |
|
CLIP text embedding, (B, L_clip, D) |
|
text_embedding_mask: torch.Tensor |
|
CLIP text embedding mask, (B, L_clip) |
|
encoder_hidden_states_t5: torch.Tensor |
|
T5 text embedding, (B, L_t5, D) |
|
text_embedding_mask_t5: torch.Tensor |
|
T5 text embedding mask, (B, L_t5) |
|
image_meta_size: torch.Tensor |
|
(B, 6) |
|
style: torch.Tensor |
|
(B) |
|
cos_cis_img: torch.Tensor |
|
sin_cis_img: torch.Tensor |
|
return_dict: bool |
|
Whether to return a dictionary. |
|
""" |
|
patches_replace = transformer_options.get("patches_replace", {}) |
|
encoder_hidden_states = context |
|
text_states = encoder_hidden_states |
|
text_states_t5 = encoder_hidden_states_t5 |
|
text_states_mask = text_embedding_mask.bool() |
|
text_states_t5_mask = text_embedding_mask_t5.bool() |
|
b_t5, l_t5, c_t5 = text_states_t5.shape |
|
text_states_t5 = self.mlp_t5(text_states_t5.view(-1, c_t5)).view(b_t5, l_t5, -1) |
|
|
|
padding = comfy.ops.cast_to_input(self.text_embedding_padding, text_states) |
|
|
|
text_states[:,-self.text_len:] = torch.where(text_states_mask[:,-self.text_len:].unsqueeze(2), text_states[:,-self.text_len:], padding[:self.text_len]) |
|
text_states_t5[:,-self.text_len_t5:] = torch.where(text_states_t5_mask[:,-self.text_len_t5:].unsqueeze(2), text_states_t5[:,-self.text_len_t5:], padding[self.text_len:]) |
|
|
|
text_states = torch.cat([text_states, text_states_t5], dim=1) |
|
|
|
|
|
_, _, oh, ow = x.shape |
|
th, tw = (oh + (self.patch_size // 2)) // self.patch_size, (ow + (self.patch_size // 2)) // self.patch_size |
|
|
|
|
|
|
|
freqs_cis_img = calc_rope(x, self.patch_size, self.hidden_size // self.num_heads) |
|
|
|
|
|
t = self.t_embedder(t, dtype=x.dtype) |
|
x = self.x_embedder(x) |
|
|
|
|
|
|
|
extra_vec = self.pooler(encoder_hidden_states_t5) |
|
|
|
|
|
if self.size_cond: |
|
image_meta_size = timestep_embedding(image_meta_size.view(-1), 256).to(x.dtype) |
|
image_meta_size = image_meta_size.view(-1, 6 * 256) |
|
extra_vec = torch.cat([extra_vec, image_meta_size], dim=1) |
|
|
|
|
|
if self.use_style_cond: |
|
if style is None: |
|
style = torch.zeros((extra_vec.shape[0],), device=x.device, dtype=torch.int) |
|
style_embedding = self.style_embedder(style, out_dtype=x.dtype) |
|
extra_vec = torch.cat([extra_vec, style_embedding], dim=1) |
|
|
|
|
|
c = t + self.extra_embedder(extra_vec) |
|
|
|
blocks_replace = patches_replace.get("dit", {}) |
|
|
|
controls = None |
|
if control: |
|
controls = control.get("output", None) |
|
|
|
skips = [] |
|
for layer, block in enumerate(self.blocks): |
|
if layer > self.depth // 2: |
|
if controls is not None: |
|
skip = skips.pop() + controls.pop().to(dtype=x.dtype) |
|
else: |
|
skip = skips.pop() |
|
else: |
|
skip = None |
|
|
|
if ("double_block", layer) in blocks_replace: |
|
def block_wrap(args): |
|
out = {} |
|
out["img"] = block(args["img"], args["vec"], args["txt"], args["pe"], args["skip"]) |
|
return out |
|
|
|
out = blocks_replace[("double_block", layer)]({"img": x, "txt": text_states, "vec": c, "pe": freqs_cis_img, "skip": skip}, {"original_block": block_wrap}) |
|
x = out["img"] |
|
else: |
|
x = block(x, c, text_states, freqs_cis_img, skip) |
|
|
|
|
|
if layer < (self.depth // 2 - 1): |
|
skips.append(x) |
|
if controls is not None and len(controls) != 0: |
|
raise ValueError("The number of controls is not equal to the number of skip connections.") |
|
|
|
|
|
x = self.final_layer(x, c) |
|
x = self.unpatchify(x, th, tw) |
|
|
|
if return_dict: |
|
return {'x': x} |
|
if self.learn_sigma: |
|
return x[:,:self.out_channels // 2,:oh,:ow] |
|
return x[:,:,:oh,:ow] |
|
|
|
def unpatchify(self, x, h, w): |
|
""" |
|
x: (N, T, patch_size**2 * C) |
|
imgs: (N, H, W, C) |
|
""" |
|
c = self.unpatchify_channels |
|
p = self.x_embedder.patch_size[0] |
|
|
|
assert h * w == x.shape[1] |
|
|
|
x = x.reshape(shape=(x.shape[0], h, w, p, p, c)) |
|
x = torch.einsum('nhwpqc->nchpwq', x) |
|
imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p)) |
|
return imgs |
|
|