Spaces:
ginipick
/
Running on Zero

multimodalart's picture
Squashing commit
4450790 verified
raw
history blame
50.9 kB
import torch
import torch.nn.functional as F
from torchvision.transforms import functional as TF
from PIL import Image, ImageDraw, ImageFilter, ImageFont
import scipy.ndimage
import numpy as np
from contextlib import nullcontext
import os
import model_management
from comfy.utils import ProgressBar
from comfy.utils import common_upscale
from nodes import MAX_RESOLUTION
import folder_paths
from ..utility.utility import tensor2pil, pil2tensor
script_directory = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
class BatchCLIPSeg:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {"required":
{
"images": ("IMAGE",),
"text": ("STRING", {"multiline": False}),
"threshold": ("FLOAT", {"default": 0.5,"min": 0.0, "max": 10.0, "step": 0.001}),
"binary_mask": ("BOOLEAN", {"default": True}),
"combine_mask": ("BOOLEAN", {"default": False}),
"use_cuda": ("BOOLEAN", {"default": True}),
},
"optional":
{
"blur_sigma": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 100.0, "step": 0.1}),
"opt_model": ("CLIPSEGMODEL", ),
"prev_mask": ("MASK", {"default": None}),
"image_bg_level": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
"invert": ("BOOLEAN", {"default": False}),
}
}
CATEGORY = "KJNodes/masking"
RETURN_TYPES = ("MASK", "IMAGE", )
RETURN_NAMES = ("Mask", "Image", )
FUNCTION = "segment_image"
DESCRIPTION = """
Segments an image or batch of images using CLIPSeg.
"""
def segment_image(self, images, text, threshold, binary_mask, combine_mask, use_cuda, blur_sigma=0.0, opt_model=None, prev_mask=None, invert= False, image_bg_level=0.5):
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
import torchvision.transforms as transforms
offload_device = model_management.unet_offload_device()
device = model_management.get_torch_device()
if not use_cuda:
device = torch.device("cpu")
dtype = model_management.unet_dtype()
if opt_model is None:
checkpoint_path = os.path.join(folder_paths.models_dir,'clip_seg', 'clipseg-rd64-refined-fp16')
if not hasattr(self, "model"):
try:
if not os.path.exists(checkpoint_path):
from huggingface_hub import snapshot_download
snapshot_download(repo_id="Kijai/clipseg-rd64-refined-fp16", local_dir=checkpoint_path, local_dir_use_symlinks=False)
self.model = CLIPSegForImageSegmentation.from_pretrained(checkpoint_path)
except:
checkpoint_path = "CIDAS/clipseg-rd64-refined"
self.model = CLIPSegForImageSegmentation.from_pretrained(checkpoint_path)
processor = CLIPSegProcessor.from_pretrained(checkpoint_path)
else:
self.model = opt_model['model']
processor = opt_model['processor']
self.model.to(dtype).to(device)
B, H, W, C = images.shape
images = images.to(device)
autocast_condition = (dtype != torch.float32) and not model_management.is_device_mps(device)
with torch.autocast(model_management.get_autocast_device(device), dtype=dtype) if autocast_condition else nullcontext():
PIL_images = [Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8)) for image in images ]
prompt = [text] * len(images)
input_prc = processor(text=prompt, images=PIL_images, return_tensors="pt")
for key in input_prc:
input_prc[key] = input_prc[key].to(device)
outputs = self.model(**input_prc)
mask_tensor = torch.sigmoid(outputs.logits)
mask_tensor = (mask_tensor - mask_tensor.min()) / (mask_tensor.max() - mask_tensor.min())
mask_tensor = torch.where(mask_tensor > (threshold), mask_tensor, torch.tensor(0, dtype=torch.float))
print(mask_tensor.shape)
if len(mask_tensor.shape) == 2:
mask_tensor = mask_tensor.unsqueeze(0)
mask_tensor = F.interpolate(mask_tensor.unsqueeze(1), size=(H, W), mode='nearest')
mask_tensor = mask_tensor.squeeze(1)
self.model.to(offload_device)
if binary_mask:
mask_tensor = (mask_tensor > 0).float()
if blur_sigma > 0:
kernel_size = int(6 * int(blur_sigma) + 1)
blur = transforms.GaussianBlur(kernel_size=(kernel_size, kernel_size), sigma=(blur_sigma, blur_sigma))
mask_tensor = blur(mask_tensor)
if combine_mask:
mask_tensor = torch.max(mask_tensor, dim=0)[0]
mask_tensor = mask_tensor.unsqueeze(0).repeat(len(images),1,1)
del outputs
model_management.soft_empty_cache()
if prev_mask is not None:
if prev_mask.shape != mask_tensor.shape:
prev_mask = F.interpolate(prev_mask.unsqueeze(1), size=(H, W), mode='nearest')
mask_tensor = mask_tensor + prev_mask.to(device)
torch.clamp(mask_tensor, min=0.0, max=1.0)
if invert:
mask_tensor = 1 - mask_tensor
image_tensor = images * mask_tensor.unsqueeze(-1) + (1 - mask_tensor.unsqueeze(-1)) * image_bg_level
image_tensor = torch.clamp(image_tensor, min=0.0, max=1.0).cpu().float()
mask_tensor = mask_tensor.cpu().float()
return mask_tensor, image_tensor,
class DownloadAndLoadCLIPSeg:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {"required":
{
"model": (
[ 'Kijai/clipseg-rd64-refined-fp16',
'CIDAS/clipseg-rd64-refined',
],
),
},
}
CATEGORY = "KJNodes/masking"
RETURN_TYPES = ("CLIPSEGMODEL",)
RETURN_NAMES = ("clipseg_model",)
FUNCTION = "segment_image"
DESCRIPTION = """
Downloads and loads CLIPSeg model with huggingface_hub,
to ComfyUI/models/clip_seg
"""
def segment_image(self, model):
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
checkpoint_path = os.path.join(folder_paths.models_dir,'clip_seg', os.path.basename(model))
if not hasattr(self, "model"):
if not os.path.exists(checkpoint_path):
from huggingface_hub import snapshot_download
snapshot_download(repo_id=model, local_dir=checkpoint_path, local_dir_use_symlinks=False)
self.model = CLIPSegForImageSegmentation.from_pretrained(checkpoint_path)
processor = CLIPSegProcessor.from_pretrained(checkpoint_path)
clipseg_model = {}
clipseg_model['model'] = self.model
clipseg_model['processor'] = processor
return clipseg_model,
class CreateTextMask:
RETURN_TYPES = ("IMAGE", "MASK",)
FUNCTION = "createtextmask"
CATEGORY = "KJNodes/text"
DESCRIPTION = """
Creates a text image and mask.
Looks for fonts from this folder:
ComfyUI/custom_nodes/ComfyUI-KJNodes/fonts
If start_rotation and/or end_rotation are different values,
creates animation between them.
"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"invert": ("BOOLEAN", {"default": False}),
"frames": ("INT", {"default": 1,"min": 1, "max": 4096, "step": 1}),
"text_x": ("INT", {"default": 0,"min": 0, "max": 4096, "step": 1}),
"text_y": ("INT", {"default": 0,"min": 0, "max": 4096, "step": 1}),
"font_size": ("INT", {"default": 32,"min": 8, "max": 4096, "step": 1}),
"font_color": ("STRING", {"default": "white"}),
"text": ("STRING", {"default": "HELLO!", "multiline": True}),
"font": (folder_paths.get_filename_list("kjnodes_fonts"), ),
"width": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
"height": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
"start_rotation": ("INT", {"default": 0,"min": 0, "max": 359, "step": 1}),
"end_rotation": ("INT", {"default": 0,"min": -359, "max": 359, "step": 1}),
},
}
def createtextmask(self, frames, width, height, invert, text_x, text_y, text, font_size, font_color, font, start_rotation, end_rotation):
# Define the number of images in the batch
batch_size = frames
out = []
masks = []
rotation = start_rotation
if start_rotation != end_rotation:
rotation_increment = (end_rotation - start_rotation) / (batch_size - 1)
font_path = folder_paths.get_full_path("kjnodes_fonts", font)
# Generate the text
for i in range(batch_size):
image = Image.new("RGB", (width, height), "black")
draw = ImageDraw.Draw(image)
font = ImageFont.truetype(font_path, font_size)
# Split the text into words
words = text.split()
# Initialize variables for line creation
lines = []
current_line = []
current_line_width = 0
try: #new pillow
# Iterate through words to create lines
for word in words:
word_width = font.getbbox(word)[2]
if current_line_width + word_width <= width - 2 * text_x:
current_line.append(word)
current_line_width += word_width + font.getbbox(" ")[2] # Add space width
else:
lines.append(" ".join(current_line))
current_line = [word]
current_line_width = word_width
except: #old pillow
for word in words:
word_width = font.getsize(word)[0]
if current_line_width + word_width <= width - 2 * text_x:
current_line.append(word)
current_line_width += word_width + font.getsize(" ")[0] # Add space width
else:
lines.append(" ".join(current_line))
current_line = [word]
current_line_width = word_width
# Add the last line if it's not empty
if current_line:
lines.append(" ".join(current_line))
# Draw each line of text separately
y_offset = text_y
for line in lines:
text_width = font.getlength(line)
text_height = font_size
text_center_x = text_x + text_width / 2
text_center_y = y_offset + text_height / 2
try:
draw.text((text_x, y_offset), line, font=font, fill=font_color, features=['-liga'])
except:
draw.text((text_x, y_offset), line, font=font, fill=font_color)
y_offset += text_height # Move to the next line
if start_rotation != end_rotation:
image = image.rotate(rotation, center=(text_center_x, text_center_y))
rotation += rotation_increment
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image)[None,]
mask = image[:, :, :, 0]
masks.append(mask)
out.append(image)
if invert:
return (1.0 - torch.cat(out, dim=0), 1.0 - torch.cat(masks, dim=0),)
return (torch.cat(out, dim=0),torch.cat(masks, dim=0),)
class ColorToMask:
RETURN_TYPES = ("MASK",)
FUNCTION = "clip"
CATEGORY = "KJNodes/masking"
DESCRIPTION = """
Converts chosen RGB value to a mask.
With batch inputs, the **per_batch**
controls the number of images processed at once.
"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"images": ("IMAGE",),
"invert": ("BOOLEAN", {"default": False}),
"red": ("INT", {"default": 0,"min": 0, "max": 255, "step": 1}),
"green": ("INT", {"default": 0,"min": 0, "max": 255, "step": 1}),
"blue": ("INT", {"default": 0,"min": 0, "max": 255, "step": 1}),
"threshold": ("INT", {"default": 10,"min": 0, "max": 255, "step": 1}),
"per_batch": ("INT", {"default": 16, "min": 1, "max": 4096, "step": 1}),
},
}
def clip(self, images, red, green, blue, threshold, invert, per_batch):
color = torch.tensor([red, green, blue], dtype=torch.uint8)
black = torch.tensor([0, 0, 0], dtype=torch.uint8)
white = torch.tensor([255, 255, 255], dtype=torch.uint8)
if invert:
black, white = white, black
steps = images.shape[0]
pbar = ProgressBar(steps)
tensors_out = []
for start_idx in range(0, images.shape[0], per_batch):
# Calculate color distances
color_distances = torch.norm(images[start_idx:start_idx+per_batch] * 255 - color, dim=-1)
# Create a mask based on the threshold
mask = color_distances <= threshold
# Apply the mask to create new images
mask_out = torch.where(mask.unsqueeze(-1), white, black).float()
mask_out = mask_out.mean(dim=-1)
tensors_out.append(mask_out.cpu())
batch_count = mask_out.shape[0]
pbar.update(batch_count)
tensors_out = torch.cat(tensors_out, dim=0)
tensors_out = torch.clamp(tensors_out, min=0.0, max=1.0)
return tensors_out,
class CreateFluidMask:
RETURN_TYPES = ("IMAGE", "MASK")
FUNCTION = "createfluidmask"
CATEGORY = "KJNodes/masking/generate"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"invert": ("BOOLEAN", {"default": False}),
"frames": ("INT", {"default": 1,"min": 1, "max": 4096, "step": 1}),
"width": ("INT", {"default": 256,"min": 16, "max": 4096, "step": 1}),
"height": ("INT", {"default": 256,"min": 16, "max": 4096, "step": 1}),
"inflow_count": ("INT", {"default": 3,"min": 0, "max": 255, "step": 1}),
"inflow_velocity": ("INT", {"default": 1,"min": 0, "max": 255, "step": 1}),
"inflow_radius": ("INT", {"default": 8,"min": 0, "max": 255, "step": 1}),
"inflow_padding": ("INT", {"default": 50,"min": 0, "max": 255, "step": 1}),
"inflow_duration": ("INT", {"default": 60,"min": 0, "max": 255, "step": 1}),
},
}
#using code from https://github.com/GregTJ/stable-fluids
def createfluidmask(self, frames, width, height, invert, inflow_count, inflow_velocity, inflow_radius, inflow_padding, inflow_duration):
from ..utility.fluid import Fluid
try:
from scipy.special import erf
except:
from scipy.spatial import erf
out = []
masks = []
RESOLUTION = width, height
DURATION = frames
INFLOW_PADDING = inflow_padding
INFLOW_DURATION = inflow_duration
INFLOW_RADIUS = inflow_radius
INFLOW_VELOCITY = inflow_velocity
INFLOW_COUNT = inflow_count
print('Generating fluid solver, this may take some time.')
fluid = Fluid(RESOLUTION, 'dye')
center = np.floor_divide(RESOLUTION, 2)
r = np.min(center) - INFLOW_PADDING
points = np.linspace(-np.pi, np.pi, INFLOW_COUNT, endpoint=False)
points = tuple(np.array((np.cos(p), np.sin(p))) for p in points)
normals = tuple(-p for p in points)
points = tuple(r * p + center for p in points)
inflow_velocity = np.zeros_like(fluid.velocity)
inflow_dye = np.zeros(fluid.shape)
for p, n in zip(points, normals):
mask = np.linalg.norm(fluid.indices - p[:, None, None], axis=0) <= INFLOW_RADIUS
inflow_velocity[:, mask] += n[:, None] * INFLOW_VELOCITY
inflow_dye[mask] = 1
for f in range(DURATION):
print(f'Computing frame {f + 1} of {DURATION}.')
if f <= INFLOW_DURATION:
fluid.velocity += inflow_velocity
fluid.dye += inflow_dye
curl = fluid.step()[1]
# Using the error function to make the contrast a bit higher.
# Any other sigmoid function e.g. smoothstep would work.
curl = (erf(curl * 2) + 1) / 4
color = np.dstack((curl, np.ones(fluid.shape), fluid.dye))
color = (np.clip(color, 0, 1) * 255).astype('uint8')
image = np.array(color).astype(np.float32) / 255.0
image = torch.from_numpy(image)[None,]
mask = image[:, :, :, 0]
masks.append(mask)
out.append(image)
if invert:
return (1.0 - torch.cat(out, dim=0),1.0 - torch.cat(masks, dim=0),)
return (torch.cat(out, dim=0),torch.cat(masks, dim=0),)
class CreateAudioMask:
RETURN_TYPES = ("IMAGE",)
FUNCTION = "createaudiomask"
CATEGORY = "KJNodes/deprecated"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"invert": ("BOOLEAN", {"default": False}),
"frames": ("INT", {"default": 16,"min": 1, "max": 255, "step": 1}),
"scale": ("FLOAT", {"default": 0.5,"min": 0.0, "max": 2.0, "step": 0.01}),
"audio_path": ("STRING", {"default": "audio.wav"}),
"width": ("INT", {"default": 256,"min": 16, "max": 4096, "step": 1}),
"height": ("INT", {"default": 256,"min": 16, "max": 4096, "step": 1}),
},
}
def createaudiomask(self, frames, width, height, invert, audio_path, scale):
try:
import librosa
except ImportError:
raise Exception("Can not import librosa. Install it with 'pip install librosa'")
batch_size = frames
out = []
masks = []
if audio_path == "audio.wav": #I don't know why relative path won't work otherwise...
audio_path = os.path.join(script_directory, audio_path)
audio, sr = librosa.load(audio_path)
spectrogram = np.abs(librosa.stft(audio))
for i in range(batch_size):
image = Image.new("RGB", (width, height), "black")
draw = ImageDraw.Draw(image)
frame = spectrogram[:, i]
circle_radius = int(height * np.mean(frame))
circle_radius *= scale
circle_center = (width // 2, height // 2) # Calculate the center of the image
draw.ellipse([(circle_center[0] - circle_radius, circle_center[1] - circle_radius),
(circle_center[0] + circle_radius, circle_center[1] + circle_radius)],
fill='white')
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image)[None,]
mask = image[:, :, :, 0]
masks.append(mask)
out.append(image)
if invert:
return (1.0 - torch.cat(out, dim=0),)
return (torch.cat(out, dim=0),torch.cat(masks, dim=0),)
class CreateGradientMask:
RETURN_TYPES = ("MASK",)
FUNCTION = "createmask"
CATEGORY = "KJNodes/masking/generate"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"invert": ("BOOLEAN", {"default": False}),
"frames": ("INT", {"default": 0,"min": 0, "max": 255, "step": 1}),
"width": ("INT", {"default": 256,"min": 16, "max": 4096, "step": 1}),
"height": ("INT", {"default": 256,"min": 16, "max": 4096, "step": 1}),
},
}
def createmask(self, frames, width, height, invert):
# Define the number of images in the batch
batch_size = frames
out = []
# Create an empty array to store the image batch
image_batch = np.zeros((batch_size, height, width), dtype=np.float32)
# Generate the black to white gradient for each image
for i in range(batch_size):
gradient = np.linspace(1.0, 0.0, width, dtype=np.float32)
time = i / frames # Calculate the time variable
offset_gradient = gradient - time # Offset the gradient values based on time
image_batch[i] = offset_gradient.reshape(1, -1)
output = torch.from_numpy(image_batch)
mask = output
out.append(mask)
if invert:
return (1.0 - torch.cat(out, dim=0),)
return (torch.cat(out, dim=0),)
class CreateFadeMask:
RETURN_TYPES = ("MASK",)
FUNCTION = "createfademask"
CATEGORY = "KJNodes/deprecated"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"invert": ("BOOLEAN", {"default": False}),
"frames": ("INT", {"default": 2,"min": 2, "max": 10000, "step": 1}),
"width": ("INT", {"default": 256,"min": 16, "max": 4096, "step": 1}),
"height": ("INT", {"default": 256,"min": 16, "max": 4096, "step": 1}),
"interpolation": (["linear", "ease_in", "ease_out", "ease_in_out"],),
"start_level": ("FLOAT", {"default": 1.0,"min": 0.0, "max": 1.0, "step": 0.01}),
"midpoint_level": ("FLOAT", {"default": 0.5,"min": 0.0, "max": 1.0, "step": 0.01}),
"end_level": ("FLOAT", {"default": 0.0,"min": 0.0, "max": 1.0, "step": 0.01}),
"midpoint_frame": ("INT", {"default": 0,"min": 0, "max": 4096, "step": 1}),
},
}
def createfademask(self, frames, width, height, invert, interpolation, start_level, midpoint_level, end_level, midpoint_frame):
def ease_in(t):
return t * t
def ease_out(t):
return 1 - (1 - t) * (1 - t)
def ease_in_out(t):
return 3 * t * t - 2 * t * t * t
batch_size = frames
out = []
image_batch = np.zeros((batch_size, height, width), dtype=np.float32)
if midpoint_frame == 0:
midpoint_frame = batch_size // 2
for i in range(batch_size):
if i <= midpoint_frame:
t = i / midpoint_frame
if interpolation == "ease_in":
t = ease_in(t)
elif interpolation == "ease_out":
t = ease_out(t)
elif interpolation == "ease_in_out":
t = ease_in_out(t)
color = start_level - t * (start_level - midpoint_level)
else:
t = (i - midpoint_frame) / (batch_size - midpoint_frame)
if interpolation == "ease_in":
t = ease_in(t)
elif interpolation == "ease_out":
t = ease_out(t)
elif interpolation == "ease_in_out":
t = ease_in_out(t)
color = midpoint_level - t * (midpoint_level - end_level)
color = np.clip(color, 0, 255)
image = np.full((height, width), color, dtype=np.float32)
image_batch[i] = image
output = torch.from_numpy(image_batch)
mask = output
out.append(mask)
if invert:
return (1.0 - torch.cat(out, dim=0),)
return (torch.cat(out, dim=0),)
class CreateFadeMaskAdvanced:
RETURN_TYPES = ("MASK",)
FUNCTION = "createfademask"
CATEGORY = "KJNodes/masking/generate"
DESCRIPTION = """
Create a batch of masks interpolated between given frames and values.
Uses same syntax as Fizz' BatchValueSchedule.
First value is the frame index (not that this starts from 0, not 1)
and the second value inside the brackets is the float value of the mask in range 0.0 - 1.0
For example the default values:
0:(0.0)
7:(1.0)
15:(0.0)
Would create a mask batch fo 16 frames, starting from black,
interpolating with the chosen curve to fully white at the 8th frame,
and interpolating from that to fully black at the 16th frame.
"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"points_string": ("STRING", {"default": "0:(0.0),\n7:(1.0),\n15:(0.0)\n", "multiline": True}),
"invert": ("BOOLEAN", {"default": False}),
"frames": ("INT", {"default": 16,"min": 2, "max": 10000, "step": 1}),
"width": ("INT", {"default": 512,"min": 1, "max": 4096, "step": 1}),
"height": ("INT", {"default": 512,"min": 1, "max": 4096, "step": 1}),
"interpolation": (["linear", "ease_in", "ease_out", "ease_in_out"],),
},
}
def createfademask(self, frames, width, height, invert, points_string, interpolation):
def ease_in(t):
return t * t
def ease_out(t):
return 1 - (1 - t) * (1 - t)
def ease_in_out(t):
return 3 * t * t - 2 * t * t * t
# Parse the input string into a list of tuples
points = []
points_string = points_string.rstrip(',\n')
for point_str in points_string.split(','):
frame_str, color_str = point_str.split(':')
frame = int(frame_str.strip())
color = float(color_str.strip()[1:-1]) # Remove parentheses around color
points.append((frame, color))
# Check if the last frame is already in the points
if len(points) == 0 or points[-1][0] != frames - 1:
# If not, add it with the color of the last specified frame
points.append((frames - 1, points[-1][1] if points else 0))
# Sort the points by frame number
points.sort(key=lambda x: x[0])
batch_size = frames
out = []
image_batch = np.zeros((batch_size, height, width), dtype=np.float32)
# Index of the next point to interpolate towards
next_point = 1
for i in range(batch_size):
while next_point < len(points) and i > points[next_point][0]:
next_point += 1
# Interpolate between the previous point and the next point
prev_point = next_point - 1
t = (i - points[prev_point][0]) / (points[next_point][0] - points[prev_point][0])
if interpolation == "ease_in":
t = ease_in(t)
elif interpolation == "ease_out":
t = ease_out(t)
elif interpolation == "ease_in_out":
t = ease_in_out(t)
elif interpolation == "linear":
pass # No need to modify `t` for linear interpolation
color = points[prev_point][1] - t * (points[prev_point][1] - points[next_point][1])
color = np.clip(color, 0, 255)
image = np.full((height, width), color, dtype=np.float32)
image_batch[i] = image
output = torch.from_numpy(image_batch)
mask = output
out.append(mask)
if invert:
return (1.0 - torch.cat(out, dim=0),)
return (torch.cat(out, dim=0),)
class CreateMagicMask:
RETURN_TYPES = ("MASK", "MASK",)
RETURN_NAMES = ("mask", "mask_inverted",)
FUNCTION = "createmagicmask"
CATEGORY = "KJNodes/masking/generate"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"frames": ("INT", {"default": 16,"min": 2, "max": 4096, "step": 1}),
"depth": ("INT", {"default": 12,"min": 1, "max": 500, "step": 1}),
"distortion": ("FLOAT", {"default": 1.5,"min": 0.0, "max": 100.0, "step": 0.01}),
"seed": ("INT", {"default": 123,"min": 0, "max": 99999999, "step": 1}),
"transitions": ("INT", {"default": 1,"min": 1, "max": 20, "step": 1}),
"frame_width": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
"frame_height": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
},
}
def createmagicmask(self, frames, transitions, depth, distortion, seed, frame_width, frame_height):
from ..utility.magictex import coordinate_grid, random_transform, magic
import matplotlib.pyplot as plt
rng = np.random.default_rng(seed)
out = []
coords = coordinate_grid((frame_width, frame_height))
# Calculate the number of frames for each transition
frames_per_transition = frames // transitions
# Generate a base set of parameters
base_params = {
"coords": random_transform(coords, rng),
"depth": depth,
"distortion": distortion,
}
for t in range(transitions):
# Generate a second set of parameters that is at most max_diff away from the base parameters
params1 = base_params.copy()
params2 = base_params.copy()
params1['coords'] = random_transform(coords, rng)
params2['coords'] = random_transform(coords, rng)
for i in range(frames_per_transition):
# Compute the interpolation factor
alpha = i / frames_per_transition
# Interpolate between the two sets of parameters
params = params1.copy()
params['coords'] = (1 - alpha) * params1['coords'] + alpha * params2['coords']
tex = magic(**params)
dpi = frame_width / 10
fig = plt.figure(figsize=(10, 10), dpi=dpi)
ax = fig.add_subplot(111)
plt.subplots_adjust(left=0, right=1, bottom=0, top=1)
ax.get_yaxis().set_ticks([])
ax.get_xaxis().set_ticks([])
ax.imshow(tex, aspect='auto')
fig.canvas.draw()
img = np.array(fig.canvas.renderer._renderer)
plt.close(fig)
pil_img = Image.fromarray(img).convert("L")
mask = torch.tensor(np.array(pil_img)) / 255.0
out.append(mask)
return (torch.stack(out, dim=0), 1.0 - torch.stack(out, dim=0),)
class CreateShapeMask:
RETURN_TYPES = ("MASK", "MASK",)
RETURN_NAMES = ("mask", "mask_inverted",)
FUNCTION = "createshapemask"
CATEGORY = "KJNodes/masking/generate"
DESCRIPTION = """
Creates a mask or batch of masks with the specified shape.
Locations are center locations.
Grow value is the amount to grow the shape on each frame, creating animated masks.
"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"shape": (
[ 'circle',
'square',
'triangle',
],
{
"default": 'circle'
}),
"frames": ("INT", {"default": 1,"min": 1, "max": 4096, "step": 1}),
"location_x": ("INT", {"default": 256,"min": 0, "max": 4096, "step": 1}),
"location_y": ("INT", {"default": 256,"min": 0, "max": 4096, "step": 1}),
"grow": ("INT", {"default": 0, "min": -512, "max": 512, "step": 1}),
"frame_width": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
"frame_height": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
"shape_width": ("INT", {"default": 128,"min": 8, "max": 4096, "step": 1}),
"shape_height": ("INT", {"default": 128,"min": 8, "max": 4096, "step": 1}),
},
}
def createshapemask(self, frames, frame_width, frame_height, location_x, location_y, shape_width, shape_height, grow, shape):
# Define the number of images in the batch
batch_size = frames
out = []
color = "white"
for i in range(batch_size):
image = Image.new("RGB", (frame_width, frame_height), "black")
draw = ImageDraw.Draw(image)
# Calculate the size for this frame and ensure it's not less than 0
current_width = max(0, shape_width + i*grow)
current_height = max(0, shape_height + i*grow)
if shape == 'circle' or shape == 'square':
# Define the bounding box for the shape
left_up_point = (location_x - current_width // 2, location_y - current_height // 2)
right_down_point = (location_x + current_width // 2, location_y + current_height // 2)
two_points = [left_up_point, right_down_point]
if shape == 'circle':
draw.ellipse(two_points, fill=color)
elif shape == 'square':
draw.rectangle(two_points, fill=color)
elif shape == 'triangle':
# Define the points for the triangle
left_up_point = (location_x - current_width // 2, location_y + current_height // 2) # bottom left
right_down_point = (location_x + current_width // 2, location_y + current_height // 2) # bottom right
top_point = (location_x, location_y - current_height // 2) # top point
draw.polygon([top_point, left_up_point, right_down_point], fill=color)
image = pil2tensor(image)
mask = image[:, :, :, 0]
out.append(mask)
outstack = torch.cat(out, dim=0)
return (outstack, 1.0 - outstack,)
class CreateVoronoiMask:
RETURN_TYPES = ("MASK", "MASK",)
RETURN_NAMES = ("mask", "mask_inverted",)
FUNCTION = "createvoronoi"
CATEGORY = "KJNodes/masking/generate"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"frames": ("INT", {"default": 16,"min": 2, "max": 4096, "step": 1}),
"num_points": ("INT", {"default": 15,"min": 1, "max": 4096, "step": 1}),
"line_width": ("INT", {"default": 4,"min": 1, "max": 4096, "step": 1}),
"speed": ("FLOAT", {"default": 0.5,"min": 0.0, "max": 1.0, "step": 0.01}),
"frame_width": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
"frame_height": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
},
}
def createvoronoi(self, frames, num_points, line_width, speed, frame_width, frame_height):
from scipy.spatial import Voronoi
# Define the number of images in the batch
batch_size = frames
out = []
# Calculate aspect ratio
aspect_ratio = frame_width / frame_height
# Create start and end points for each point, considering the aspect ratio
start_points = np.random.rand(num_points, 2)
start_points[:, 0] *= aspect_ratio
end_points = np.random.rand(num_points, 2)
end_points[:, 0] *= aspect_ratio
for i in range(batch_size):
# Interpolate the points' positions based on the current frame
t = (i * speed) / (batch_size - 1) # normalize to [0, 1] over the frames
t = np.clip(t, 0, 1) # ensure t is in [0, 1]
points = (1 - t) * start_points + t * end_points # lerp
# Adjust points for aspect ratio
points[:, 0] *= aspect_ratio
vor = Voronoi(points)
# Create a blank image with a white background
fig, ax = plt.subplots()
plt.subplots_adjust(left=0, right=1, bottom=0, top=1)
ax.set_xlim([0, aspect_ratio]); ax.set_ylim([0, 1]) # adjust x limits
ax.axis('off')
ax.margins(0, 0)
fig.set_size_inches(aspect_ratio * frame_height/100, frame_height/100) # adjust figure size
ax.fill_between([0, 1], [0, 1], color='white')
# Plot each Voronoi ridge
for simplex in vor.ridge_vertices:
simplex = np.asarray(simplex)
if np.all(simplex >= 0):
plt.plot(vor.vertices[simplex, 0], vor.vertices[simplex, 1], 'k-', linewidth=line_width)
fig.canvas.draw()
img = np.array(fig.canvas.renderer._renderer)
plt.close(fig)
pil_img = Image.fromarray(img).convert("L")
mask = torch.tensor(np.array(pil_img)) / 255.0
out.append(mask)
return (torch.stack(out, dim=0), 1.0 - torch.stack(out, dim=0),)
class GetMaskSizeAndCount:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"mask": ("MASK",),
}}
RETURN_TYPES = ("MASK","INT", "INT", "INT",)
RETURN_NAMES = ("mask", "width", "height", "count",)
FUNCTION = "getsize"
CATEGORY = "KJNodes/masking"
DESCRIPTION = """
Returns the width, height and batch size of the mask,
and passes it through unchanged.
"""
def getsize(self, mask):
width = mask.shape[2]
height = mask.shape[1]
count = mask.shape[0]
return {"ui": {
"text": [f"{count}x{width}x{height}"]},
"result": (mask, width, height, count)
}
class GrowMaskWithBlur:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"mask": ("MASK",),
"expand": ("INT", {"default": 0, "min": -MAX_RESOLUTION, "max": MAX_RESOLUTION, "step": 1}),
"incremental_expandrate": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 100.0, "step": 0.1}),
"tapered_corners": ("BOOLEAN", {"default": True}),
"flip_input": ("BOOLEAN", {"default": False}),
"blur_radius": ("FLOAT", {
"default": 0.0,
"min": 0.0,
"max": 100,
"step": 0.1
}),
"lerp_alpha": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"decay_factor": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
},
"optional": {
"fill_holes": ("BOOLEAN", {"default": False}),
},
}
CATEGORY = "KJNodes/masking"
RETURN_TYPES = ("MASK", "MASK",)
RETURN_NAMES = ("mask", "mask_inverted",)
FUNCTION = "expand_mask"
DESCRIPTION = """
# GrowMaskWithBlur
- mask: Input mask or mask batch
- expand: Expand or contract mask or mask batch by a given amount
- incremental_expandrate: increase expand rate by a given amount per frame
- tapered_corners: use tapered corners
- flip_input: flip input mask
- blur_radius: value higher than 0 will blur the mask
- lerp_alpha: alpha value for interpolation between frames
- decay_factor: decay value for interpolation between frames
- fill_holes: fill holes in the mask (slow)"""
def expand_mask(self, mask, expand, tapered_corners, flip_input, blur_radius, incremental_expandrate, lerp_alpha, decay_factor, fill_holes=False):
alpha = lerp_alpha
decay = decay_factor
if flip_input:
mask = 1.0 - mask
c = 0 if tapered_corners else 1
kernel = np.array([[c, 1, c],
[1, 1, 1],
[c, 1, c]])
growmask = mask.reshape((-1, mask.shape[-2], mask.shape[-1])).cpu()
out = []
previous_output = None
current_expand = expand
for m in growmask:
output = m.numpy().astype(np.float32)
for _ in range(abs(round(current_expand))):
if current_expand < 0:
output = scipy.ndimage.grey_erosion(output, footprint=kernel)
else:
output = scipy.ndimage.grey_dilation(output, footprint=kernel)
if current_expand < 0:
current_expand -= abs(incremental_expandrate)
else:
current_expand += abs(incremental_expandrate)
if fill_holes:
binary_mask = output > 0
output = scipy.ndimage.binary_fill_holes(binary_mask)
output = output.astype(np.float32) * 255
output = torch.from_numpy(output)
if alpha < 1.0 and previous_output is not None:
# Interpolate between the previous and current frame
output = alpha * output + (1 - alpha) * previous_output
if decay < 1.0 and previous_output is not None:
# Add the decayed previous output to the current frame
output += decay * previous_output
output = output / output.max()
previous_output = output
out.append(output)
if blur_radius != 0:
# Convert the tensor list to PIL images, apply blur, and convert back
for idx, tensor in enumerate(out):
# Convert tensor to PIL image
pil_image = tensor2pil(tensor.cpu().detach())[0]
# Apply Gaussian blur
pil_image = pil_image.filter(ImageFilter.GaussianBlur(blur_radius))
# Convert back to tensor
out[idx] = pil2tensor(pil_image)
blurred = torch.cat(out, dim=0)
return (blurred, 1.0 - blurred)
else:
return (torch.stack(out, dim=0), 1.0 - torch.stack(out, dim=0),)
class MaskBatchMulti:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"inputcount": ("INT", {"default": 2, "min": 2, "max": 1000, "step": 1}),
"mask_1": ("MASK", ),
"mask_2": ("MASK", ),
},
}
RETURN_TYPES = ("MASK",)
RETURN_NAMES = ("masks",)
FUNCTION = "combine"
CATEGORY = "KJNodes/masking"
DESCRIPTION = """
Creates an image batch from multiple masks.
You can set how many inputs the node has,
with the **inputcount** and clicking update.
"""
def combine(self, inputcount, **kwargs):
mask = kwargs["mask_1"]
for c in range(1, inputcount):
new_mask = kwargs[f"mask_{c + 1}"]
if mask.shape[1:] != new_mask.shape[1:]:
new_mask = F.interpolate(new_mask.unsqueeze(1), size=(mask.shape[1], mask.shape[2]), mode="bicubic").squeeze(1)
mask = torch.cat((mask, new_mask), dim=0)
return (mask,)
class OffsetMask:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"mask": ("MASK",),
"x": ("INT", { "default": 0, "min": -4096, "max": MAX_RESOLUTION, "step": 1, "display": "number" }),
"y": ("INT", { "default": 0, "min": -4096, "max": MAX_RESOLUTION, "step": 1, "display": "number" }),
"angle": ("INT", { "default": 0, "min": -360, "max": 360, "step": 1, "display": "number" }),
"duplication_factor": ("INT", { "default": 1, "min": 1, "max": 1000, "step": 1, "display": "number" }),
"roll": ("BOOLEAN", { "default": False }),
"incremental": ("BOOLEAN", { "default": False }),
"padding_mode": (
[
'empty',
'border',
'reflection',
], {
"default": 'empty'
}),
}
}
RETURN_TYPES = ("MASK",)
RETURN_NAMES = ("mask",)
FUNCTION = "offset"
CATEGORY = "KJNodes/masking"
DESCRIPTION = """
Offsets the mask by the specified amount.
- mask: Input mask or mask batch
- x: Horizontal offset
- y: Vertical offset
- angle: Angle in degrees
- roll: roll edge wrapping
- duplication_factor: Number of times to duplicate the mask to form a batch
- border padding_mode: Padding mode for the mask
"""
def offset(self, mask, x, y, angle, roll=False, incremental=False, duplication_factor=1, padding_mode="empty"):
# Create duplicates of the mask batch
mask = mask.repeat(duplication_factor, 1, 1).clone()
batch_size, height, width = mask.shape
if angle != 0 and incremental:
for i in range(batch_size):
rotation_angle = angle * (i+1)
mask[i] = TF.rotate(mask[i].unsqueeze(0), rotation_angle).squeeze(0)
elif angle > 0:
for i in range(batch_size):
mask[i] = TF.rotate(mask[i].unsqueeze(0), angle).squeeze(0)
if roll:
if incremental:
for i in range(batch_size):
shift_x = min(x*(i+1), width-1)
shift_y = min(y*(i+1), height-1)
if shift_x != 0:
mask[i] = torch.roll(mask[i], shifts=shift_x, dims=1)
if shift_y != 0:
mask[i] = torch.roll(mask[i], shifts=shift_y, dims=0)
else:
shift_x = min(x, width-1)
shift_y = min(y, height-1)
if shift_x != 0:
mask = torch.roll(mask, shifts=shift_x, dims=2)
if shift_y != 0:
mask = torch.roll(mask, shifts=shift_y, dims=1)
else:
for i in range(batch_size):
if incremental:
temp_x = min(x * (i+1), width-1)
temp_y = min(y * (i+1), height-1)
else:
temp_x = min(x, width-1)
temp_y = min(y, height-1)
if temp_x > 0:
if padding_mode == 'empty':
mask[i] = torch.cat([torch.zeros((height, temp_x)), mask[i, :, :-temp_x]], dim=1)
elif padding_mode in ['replicate', 'reflect']:
mask[i] = F.pad(mask[i, :, :-temp_x], (0, temp_x), mode=padding_mode)
elif temp_x < 0:
if padding_mode == 'empty':
mask[i] = torch.cat([mask[i, :, :temp_x], torch.zeros((height, -temp_x))], dim=1)
elif padding_mode in ['replicate', 'reflect']:
mask[i] = F.pad(mask[i, :, -temp_x:], (temp_x, 0), mode=padding_mode)
if temp_y > 0:
if padding_mode == 'empty':
mask[i] = torch.cat([torch.zeros((temp_y, width)), mask[i, :-temp_y, :]], dim=0)
elif padding_mode in ['replicate', 'reflect']:
mask[i] = F.pad(mask[i, :-temp_y, :], (0, temp_y), mode=padding_mode)
elif temp_y < 0:
if padding_mode == 'empty':
mask[i] = torch.cat([mask[i, :temp_y, :], torch.zeros((-temp_y, width))], dim=0)
elif padding_mode in ['replicate', 'reflect']:
mask[i] = F.pad(mask[i, -temp_y:, :], (temp_y, 0), mode=padding_mode)
return mask,
class RoundMask:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"mask": ("MASK",),
}}
RETURN_TYPES = ("MASK",)
FUNCTION = "round"
CATEGORY = "KJNodes/masking"
DESCRIPTION = """
Rounds the mask or batch of masks to a binary mask.
<img src="https://github.com/kijai/ComfyUI-KJNodes/assets/40791699/52c85202-f74e-4b96-9dac-c8bda5ddcc40" width="300" height="250" alt="RoundMask example">
"""
def round(self, mask):
mask = mask.round()
return (mask,)
class ResizeMask:
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"mask": ("MASK",),
"width": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8, "display": "number" }),
"height": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8, "display": "number" }),
"keep_proportions": ("BOOLEAN", { "default": False }),
"upscale_method": (s.upscale_methods,),
"crop": (["disabled","center"],),
}
}
RETURN_TYPES = ("MASK", "INT", "INT",)
RETURN_NAMES = ("mask", "width", "height",)
FUNCTION = "resize"
CATEGORY = "KJNodes/masking"
DESCRIPTION = """
Resizes the mask or batch of masks to the specified width and height.
"""
def resize(self, mask, width, height, keep_proportions, upscale_method,crop):
if keep_proportions:
_, oh, ow = mask.shape
width = ow if width == 0 else width
height = oh if height == 0 else height
ratio = min(width / ow, height / oh)
width = round(ow*ratio)
height = round(oh*ratio)
outputs = mask.unsqueeze(1)
outputs = common_upscale(outputs, width, height, upscale_method, crop)
outputs = outputs.squeeze(1)
return(outputs, outputs.shape[2], outputs.shape[1],)
class RemapMaskRange:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"mask": ("MASK",),
"min": ("FLOAT", {"default": 0.0,"min": -10.0, "max": 1.0, "step": 0.01}),
"max": ("FLOAT", {"default": 1.0,"min": 0.0, "max": 10.0, "step": 0.01}),
}
}
RETURN_TYPES = ("MASK",)
RETURN_NAMES = ("mask",)
FUNCTION = "remap"
CATEGORY = "KJNodes/masking"
DESCRIPTION = """
Sets new min and max values for the mask.
"""
def remap(self, mask, min, max):
# Find the maximum value in the mask
mask_max = torch.max(mask)
# If the maximum mask value is zero, avoid division by zero by setting it to 1
mask_max = mask_max if mask_max > 0 else 1
# Scale the mask values to the new range defined by min and max
# The highest pixel value in the mask will be scaled to max
scaled_mask = (mask / mask_max) * (max - min) + min
# Clamp the values to ensure they are within [0.0, 1.0]
scaled_mask = torch.clamp(scaled_mask, min=0.0, max=1.0)
return (scaled_mask, )