Spaces:
ginipick
/
Running on Zero

multimodalart's picture
Squashing commit
4450790 verified
raw
history blame
12.5 kB
from pathlib import Path
import safetensors.torch
import torch
import tqdm
from ..log import log
from ..utils import Operation, Precision
from ..utils import output_dir as comfy_out_dir
PRUNE_DATA = {
"known_junk_prefix": [
"embedding_manager.embedder.",
"lora_te_text_model",
"control_model.",
],
"nai_keys": {
"cond_stage_model.transformer.embeddings.": "cond_stage_model.transformer.text_model.embeddings.",
"cond_stage_model.transformer.encoder.": "cond_stage_model.transformer.text_model.encoder.",
"cond_stage_model.transformer.final_layer_norm.": "cond_stage_model.transformer.text_model.final_layer_norm.",
},
}
# position_ids in clip is int64. model_ema.num_updates is int32
dtypes_to_fp16 = {torch.float32, torch.float64, torch.bfloat16}
dtypes_to_bf16 = {torch.float32, torch.float64, torch.float16}
dtypes_to_fp8 = {torch.float32, torch.float64, torch.bfloat16, torch.float16}
class MTB_ModelPruner:
@classmethod
def INPUT_TYPES(cls):
return {
"optional": {
"unet": ("MODEL",),
"clip": ("CLIP",),
"vae": ("VAE",),
},
"required": {
"save_separately": ("BOOLEAN", {"default": False}),
"save_folder": ("STRING", {"default": "checkpoints/ComfyUI"}),
"fix_clip": ("BOOLEAN", {"default": True}),
"remove_junk": ("BOOLEAN", {"default": True}),
"ema_mode": (
("disabled", "remove_ema", "ema_only"),
{"default": "remove_ema"},
),
"precision_unet": (
Precision.list_members(),
{"default": Precision.FULL.value},
),
"operation_unet": (
Operation.list_members(),
{"default": Operation.CONVERT.value},
),
"precision_clip": (
Precision.list_members(),
{"default": Precision.FULL.value},
),
"operation_clip": (
Operation.list_members(),
{"default": Operation.CONVERT.value},
),
"precision_vae": (
Precision.list_members(),
{"default": Precision.FULL.value},
),
"operation_vae": (
Operation.list_members(),
{"default": Operation.CONVERT.value},
),
},
}
OUTPUT_NODE = True
RETURN_TYPES = ()
CATEGORY = "mtb/prune"
FUNCTION = "prune"
def convert_precision(self, tensor: torch.Tensor, precision: Precision):
precision = Precision.from_str(precision)
log.debug(f"Converting to {precision}")
match precision:
case Precision.FP8:
if tensor.dtype in dtypes_to_fp8:
return tensor.to(torch.float8_e4m3fn)
log.error(f"Cannot convert {tensor.dtype} to fp8")
return tensor
case Precision.FP16:
if tensor.dtype in dtypes_to_fp16:
return tensor.half()
log.error(f"Cannot convert {tensor.dtype} to f16")
return tensor
case Precision.BF16:
if tensor.dtype in dtypes_to_bf16:
return tensor.bfloat16()
log.error(f"Cannot convert {tensor.dtype} to bf16")
return tensor
case Precision.FULL | Precision.FP32:
return tensor
def is_sdxl_model(self, clip: dict[str, torch.Tensor] | None):
if clip:
return (any(k.startswith("conditioner.embedders") for k in clip),)
return False
def has_ema(self, unet: dict[str, torch.Tensor]):
return any(k.startswith("model_ema") for k in unet)
def fix_clip(self, clip: dict[str, torch.Tensor] | None):
if self.is_sdxl_model(clip):
log.warn("[fix clip] SDXL not supported")
return
if clip is None:
return
position_id_key = (
"cond_stage_model.transformer.text_model.embeddings.position_ids"
)
if position_id_key in clip:
correct = torch.Tensor([list(range(77))]).to(torch.int64)
now = clip[position_id_key].to(torch.int64)
broken = correct.ne(now)
broken = [i for i in range(77) if broken[0][i]]
if len(broken) != 0:
clip[position_id_key] = correct
log.info(f"[Converter] Fixed broken clip\n{broken}")
else:
log.info(
"[Converter] Clip in this model is fine, skip fixing..."
)
else:
log.info("[Converter] Missing position id in model, try fixing...")
clip[position_id_key] = torch.Tensor([list(range(77))]).to(
torch.int64
)
return clip
def get_dicts(self, unet, clip, vae):
clip_sd = clip.get_sd()
state_dict = unet.model.state_dict_for_saving(
clip_sd, vae.get_sd(), None
)
unet = {
k: v
for k, v in state_dict.items()
if k.startswith("model.diffusion_model")
}
clip = {
k: v
for k, v in state_dict.items()
if k.startswith("cond_stage_model")
or k.startswith("conditioner.embedders")
}
vae = {
k: v
for k, v in state_dict.items()
if k.startswith("first_stage_model")
}
other = {
k: v
for k, v in state_dict.items()
if k not in unet and k not in vae and k not in clip
}
return (unet, clip, vae, other)
def do_remove_junk(self, tensors: dict[str, dict[str, torch.Tensor]]):
need_delete: list[str] = []
for layer in tensors:
for key in layer:
for jk in PRUNE_DATA["known_junk_prefix"]:
if key.startswith(jk):
need_delete.append(".".join([layer, key]))
for k in need_delete:
log.info(f"Removing junk data: {k}")
del tensors[k]
return tensors
def prune(
self,
*,
save_separately: bool,
save_folder: str,
fix_clip: bool,
remove_junk: bool,
ema_mode: str,
precision_unet: Precision,
precision_clip: Precision,
precision_vae: Precision,
operation_unet: str,
operation_clip: str,
operation_vae: str,
unet: dict[str, torch.Tensor] | None = None,
clip: dict[str, torch.Tensor] | None = None,
vae: dict[str, torch.Tensor] | None = None,
):
operation = {
"unet": Operation.from_str(operation_unet),
"clip": Operation.from_str(operation_clip),
"vae": Operation.from_str(operation_vae),
}
precision = {
"unet": Precision.from_str(precision_unet),
"clip": Precision.from_str(precision_clip),
"vae": Precision.from_str(precision_vae),
}
unet, clip, vae, _other = self.get_dicts(unet, clip, vae)
out_dir = Path(save_folder)
folder = out_dir.parent
if not out_dir.is_absolute():
folder = (comfy_out_dir / save_folder).parent
if not folder.exists():
if folder.parent.exists():
folder.mkdir()
else:
raise FileNotFoundError(
f"Folder {folder.parent} does not exist"
)
name = out_dir.name
save_name = f"{name}-{precision_unet}"
if ema_mode != "disabled":
save_name += f"-{ema_mode}"
if fix_clip:
save_name += "-clip-fix"
if (
any(o == Operation.CONVERT for o in operation.values())
and any(p == Precision.FP8 for p in precision.values())
and torch.__version__ < "2.1.0"
):
raise NotImplementedError(
"PyTorch 2.1.0 or newer is required for fp8 conversion"
)
if not self.is_sdxl_model(clip):
for part in [unet, vae, clip]:
if part:
nai_keys = PRUNE_DATA["nai_keys"]
for k in list(part.keys()):
for r in nai_keys:
if isinstance(k, str) and k.startswith(r):
new_key = k.replace(r, nai_keys[r])
part[new_key] = part[k]
del part[k]
log.info(
f"[Converter] Fixed novelai error key {k}"
)
break
if fix_clip:
clip = self.fix_clip(clip)
ok: dict[str, dict[str, torch.Tensor]] = {
"unet": {},
"clip": {},
"vae": {},
}
def _hf(part: str, wk: str, t: torch.Tensor):
if not isinstance(t, torch.Tensor):
log.debug("Not a torch tensor, skipping key")
return
log.debug(f"Operation {operation[part]}")
if operation[part] == Operation.CONVERT:
ok[part][wk] = self.convert_precision(
t, precision[part]
) # conv_func(t)
elif operation[part] == Operation.COPY:
ok[part][wk] = t
elif operation[part] == Operation.DELETE:
return
log.info("[Converter] Converting model...")
for part_name, part in zip(
["unet", "vae", "clip", "other"],
[unet, vae, clip],
strict=False,
):
if part:
match ema_mode:
case "remove_ema":
for k, v in tqdm.tqdm(part.items()):
if "model_ema." not in k:
_hf(part_name, k, v)
case "ema_only":
if not self.has_ema(part):
log.warn("No EMA to extract")
return
for k in tqdm.tqdm(part):
ema_k = "___"
try:
ema_k = "model_ema." + k[6:].replace(".", "")
except Exception:
pass
if ema_k in part:
_hf(part_name, k, part[ema_k])
elif not k.startswith("model_ema.") or k in [
"model_ema.num_updates",
"model_ema.decay",
]:
_hf(part_name, k, part[k])
case "disabled" | _:
for k, v in tqdm.tqdm(part.items()):
_hf(part_name, k, v)
if save_separately:
if remove_junk:
ok = self.do_remove_junk(ok)
flat_ok = {
k: v
for _, subdict in ok.items()
for k, v in subdict.items()
}
save_path = (
folder / f"{part_name}-{save_name}.safetensors"
).as_posix()
safetensors.torch.save_file(flat_ok, save_path)
ok: dict[str, dict[str, torch.Tensor]] = {
"unet": {},
"clip": {},
"vae": {},
}
if save_separately:
return ()
if remove_junk:
ok = self.do_remove_junk(ok)
flat_ok = {
k: v for _, subdict in ok.items() for k, v in subdict.items()
}
try:
safetensors.torch.save_file(
flat_ok, (folder / f"{save_name}.safetensors").as_posix()
)
except Exception as e:
log.error(e)
return ()
__nodes__ = [MTB_ModelPruner]