File size: 14,172 Bytes
176edce
 
 
 
 
0b63713
 
176edce
 
f8844a3
 
 
0b63713
ac3894a
176edce
0e7941e
176edce
ac3894a
 
 
 
176edce
 
 
ac3894a
176edce
343fdaf
0b63713
 
 
 
176edce
 
 
 
 
 
 
 
 
343fdaf
f8844a3
176edce
 
343fdaf
176edce
 
 
 
343fdaf
de7fb8a
f8844a3
35695a2
 
 
 
 
 
 
 
 
0e7941e
 
 
 
f8844a3
0e7941e
f8844a3
 
 
0e7941e
f8844a3
 
 
0e7941e
f8844a3
 
 
de7fb8a
35695a2
 
 
 
5e92500
35695a2
8f39f51
 
 
 
5e92500
 
35695a2
8f39f51
35695a2
 
5e92500
 
0b63713
 
 
35695a2
 
 
 
5e92500
 
 
 
 
 
 
 
 
 
 
 
 
35695a2
0b63713
 
35695a2
 
66fcae2
35695a2
66fcae2
35695a2
 
47297cd
 
 
35695a2
47297cd
 
 
35695a2
 
 
 
 
 
 
 
 
 
47297cd
35695a2
47297cd
35695a2
47297cd
35695a2
47297cd
de7fb8a
0b63713
 
0b34ea3
ac3894a
 
 
 
 
 
 
0b34ea3
ac3894a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b34ea3
 
 
ac3894a
0b34ea3
0b63713
ac3894a
0b63713
 
0b34ea3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b63713
0e7941e
 
0b63713
0e7941e
66fcae2
0e7941e
7b9b23e
0e7941e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ec2621
0e7941e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ec2621
18f2392
 
 
0e7941e
18f2392
 
0e7941e
f8844a3
18f2392
 
0e7941e
 
 
 
f8844a3
 
0e7941e
 
2de95f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e7941e
 
47297cd
 
0b34ea3
47297cd
 
 
 
 
0b34ea3
 
0b63713
 
 
 
 
 
 
35695a2
47297cd
5e92500
0b63713
 
 
3ec2621
 
0b63713
3ec2621
 
0b34ea3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8844a3
0b63713
18f2392
 
 
3ec2621
0b63713
3ec2621
0b63713
3ec2621
18f2392
 
 
 
 
 
 
 
 
 
 
 
343fdaf
176edce
ac3894a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
import spaces
import argparse
import os
import time
from os import path
import shutil
from datetime import datetime
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
import gradio as gr
import torch
from diffusers import FluxPipeline
from PIL import Image


# Setup and initialization code
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
# Use PERSISTENT_DIR environment variable for Spaces
PERSISTENT_DIR = os.environ.get("PERSISTENT_DIR", ".")
gallery_path = path.join(PERSISTENT_DIR, "gallery")

os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path

torch.backends.cuda.matmul.allow_tf32 = True

# Create gallery directory if it doesn't exist
if not path.exists(gallery_path):
    os.makedirs(gallery_path, exist_ok=True)

class timer:
    def __init__(self, method_name="timed process"):
        self.method = method_name
    def __enter__(self):
        self.start = time.time()
        print(f"{self.method} starts")
    def __exit__(self, exc_type, exc_val, exc_tb):
        end = time.time()
        print(f"{self.method} took {str(round(end - self.start, 2))}s")

# Model initialization
if not path.exists(cache_path):
    os.makedirs(cache_path, exist_ok=True)

pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"))
pipe.fuse_lora(lora_scale=0.125)
pipe.to(device="cuda", dtype=torch.bfloat16)

css = """
footer {display: none !important}
.gradio-container {
    max-width: 1200px;
    margin: auto;
}
.contain {
    background: rgba(255, 255, 255, 0.05);
    border-radius: 12px;
    padding: 20px;
}
.generate-btn {
    background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important;
    border: none !important;
    color: white !important;
}
.generate-btn:hover {
    transform: translateY(-2px);
    box-shadow: 0 5px 15px rgba(0,0,0,0.2);
}
.title {
    text-align: center;
    font-size: 2.5em;
    font-weight: bold;
    margin-bottom: 1em;
    background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%);
    -webkit-background-clip: text;
    -webkit-text-fill-color: transparent;
}
/* Gallery specific styles */
#gallery {
    width: 100% !important;
    max-width: 100% !important;
    overflow: visible !important;
}
#gallery > div {
    width: 100% !important;
    max-width: none !important;
}
#gallery > div > div {
    width: 100% !important;
    display: grid !important;
    grid-template-columns: repeat(5, 1fr) !important;
    gap: 16px !important;
    padding: 16px !important;
}
.gallery-container {
    background: rgba(255, 255, 255, 0.05);
    border-radius: 8px;
    margin-top: 10px;
    width: 100% !important;
    box-sizing: border-box !important;
}
/* Force gallery items to maintain aspect ratio */
.gallery-item {
    width: 100% !important;
    aspect-ratio: 1 !important;
    overflow: hidden !important;
    border-radius: 4px !important;
}
.gallery-item img {
    width: 100% !important;
    height: 100% !important;
    object-fit: cover !important;
    border-radius: 4px !important;
    transition: transform 0.2s;
}
.gallery-item img:hover {
    transform: scale(1.05);
}
/* Force output image container to full width */
.output-image {
    width: 100% !important;
    max-width: 100% !important;
}
/* Force container widths */
.contain > div {
    width: 100% !important;
    max-width: 100% !important;
}
.fixed-width {
    width: 100% !important;
    max-width: 100% !important;
}
/* Remove any horizontal scrolling */
.gallery-container::-webkit-scrollbar {
    display: none !important;
}
.gallery-container {
    -ms-overflow-style: none !important;
    scrollbar-width: none !important;
}
/* Ensure consistent sizing for gallery wrapper */
#gallery > div {
    width: 100% !important;
    max-width: 100% !important;
}
#gallery > div > div {
    width: 100% !important;
    max-width: 100% !important;
}
"""
def save_image(image):
    """Save the generated image and return the path"""
    try:
        # Ensure gallery directory exists
        if not os.path.exists(gallery_path):
            try:
                os.makedirs(gallery_path, exist_ok=True)
            except Exception as e:
                print(f"Failed to create gallery directory: {str(e)}")
                return None
        
        # Generate unique filename with timestamp and random suffix
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        random_suffix = os.urandom(4).hex()
        filename = f"generated_{timestamp}_{random_suffix}.png"
        filepath = os.path.join(gallery_path, filename)
        
        try:
            if isinstance(image, Image.Image):
                image.save(filepath, "PNG", quality=100)
            else:
                image = Image.fromarray(image)
                image.save(filepath, "PNG", quality=100)
            
            if not os.path.exists(filepath):
                print(f"Warning: Failed to verify saved image at {filepath}")
                return None
                
            return filepath
        except Exception as e:
            print(f"Failed to save image: {str(e)}")
            return None
            
    except Exception as e:
        print(f"Error in save_image: {str(e)}")
        return None


def load_gallery():
    """Load all images from the gallery directory"""
    try:
        # Ensure gallery directory exists
        os.makedirs(gallery_path, exist_ok=True)
        
        # Get all image files and sort by modification time
        image_files = []
        for f in os.listdir(gallery_path):
            if f.lower().endswith(('.png', '.jpg', '.jpeg')):
                full_path = os.path.join(gallery_path, f)
                image_files.append((full_path, os.path.getmtime(full_path)))
        
        # Sort by modification time (newest first)
        image_files.sort(key=lambda x: x[1], reverse=True)
        
        # Return only the file paths
        return [f[0] for f in image_files]
    except Exception as e:
        print(f"Error loading gallery: {str(e)}")
        return []

# Create Gradio interface
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
    gr.HTML('<div class="title">AI Image Generator</div>')
    gr.HTML('<div style="text-align: center; margin-bottom: 2em; color: #666;">Create stunning images from your descriptions</div>')

    with gr.Row():
        with gr.Column(scale=3):
            prompt = gr.Textbox(
                label="Image Description",
                placeholder="Describe the image you want to create...",
                lines=3
            )
            
            with gr.Accordion("Advanced Settings", open=False):
                with gr.Row():
                    height = gr.Slider(
                        label="Height",
                        minimum=256,
                        maximum=1152,
                        step=64,
                        value=1024
                    )
                    width = gr.Slider(
                        label="Width",
                        minimum=256,
                        maximum=1152,
                        step=64,
                        value=1024
                    )
                
                with gr.Row():
                    steps = gr.Slider(
                        label="Inference Steps",
                        minimum=6,
                        maximum=25,
                        step=1,
                        value=8
                    )
                    scales = gr.Slider(
                        label="Guidance Scale",
                        minimum=0.0,
                        maximum=5.0,
                        step=0.1,
                        value=3.5
                    )
                
                def get_random_seed():
                    return torch.randint(0, 1000000, (1,)).item()
                
                seed = gr.Number(
                    label="Seed (random by default, set for reproducibility)",
                    value=get_random_seed(),
                    precision=0
                )
                
                randomize_seed = gr.Button("🎲 Randomize Seed", elem_classes=["generate-btn"])
            
            generate_btn = gr.Button(
                "✨ Generate Image",
                elem_classes=["generate-btn"]
            )
            
            gr.HTML("""
                <div style="margin-top: 1em; padding: 1em; border-radius: 8px; background: rgba(255, 255, 255, 0.05);">
                    <h4 style="margin: 0 0 0.5em 0;">Example Prompts:</h4>
                    <div style="background: rgba(75, 121, 161, 0.1); padding: 1em; border-radius: 8px; margin-bottom: 1em;">
                        <p style="font-weight: bold; margin: 0 0 0.5em 0;">πŸŒ… Cinematic Landscape</p>
                        <p style="margin: 0; font-style: italic;">"A breathtaking mountain vista at golden hour, dramatic sunbeams piercing through clouds, snow-capped peaks reflecting warm light, ultra-high detail photography, artistically composed, award-winning landscape photo, shot on Hasselblad"</p>
                    </div>
                    <div style="background: rgba(75, 121, 161, 0.1); padding: 1em; border-radius: 8px; margin-bottom: 1em;">
                        <p style="font-weight: bold; margin: 0 0 0.5em 0;">πŸ–ΌοΈ Fantasy Portrait</p>
                        <p style="margin: 0; font-style: italic;">"Ethereal portrait of an elven queen with flowing silver hair, adorned with luminescent crystals, intricate crown of twisted gold and moonstone, soft ethereal lighting, detailed facial features, fantasy art style, highly detailed, painted by Artgerm and Charlie Bowater"</p>
                    </div>
                    <div style="background: rgba(75, 121, 161, 0.1); padding: 1em; border-radius: 8px; margin-bottom: 1em;">
                        <p style="font-weight: bold; margin: 0 0 0.5em 0;">πŸŒƒ Cyberpunk Scene</p>
                        <p style="margin: 0; font-style: italic;">"Neon-lit cyberpunk street market in rain, holographic advertisements reflecting in puddles, street vendors with glowing cyber-augmentations, dense urban environment, atmospheric fog, cinematic lighting, inspired by Blade Runner 2049"</p>
                    </div>
                    <div style="background: rgba(75, 121, 161, 0.1); padding: 1em; border-radius: 8px; margin-bottom: 1em;">
                        <p style="font-weight: bold; margin: 0 0 0.5em 0;">🎨 Abstract Art</p>
                        <p style="margin: 0; font-style: italic;">"Vibrant abstract composition of flowing liquid colors, dynamic swirls of iridescent purples and teals, golden geometric patterns emerging from chaos, luxury art style, ultra-detailed, painted in oil on canvas, inspired by James Jean and Gustav Klimt"</p>
                    </div>
                    <div style="background: rgba(75, 121, 161, 0.1); padding: 1em; border-radius: 8px; margin-bottom: 1em;">
                        <p style="font-weight: bold; margin: 0 0 0.5em 0;">🌿 Macro Nature</p>
                        <p style="margin: 0; font-style: italic;">"Extreme macro photography of a dewdrop on a butterfly wing, rainbow light refraction, crystalline clarity, intricate wing scales visible, natural bokeh background, professional studio lighting, shot with Canon MP-E 65mm lens"</p>
                    </div>
                </div>
            """)

        with gr.Column(scale=4, elem_classes=["fixed-width"]):
            # Current generated image
            output = gr.Image(
                label="Generated Image",
                elem_id="output-image",
                elem_classes=["output-image", "fixed-width"]
            )
            
            # Gallery of generated images
            gallery = gr.Gallery(
                label="Generated Images Gallery",
                show_label=True,
                elem_id="gallery",
                columns=[4],
                rows=[2],
                height="auto",
                object_fit="cover",
                elem_classes=["gallery-container", "fixed-width"]
            )
            
            # Load existing gallery images on startup
            gallery.value = load_gallery()
    
    @spaces.GPU
    def process_and_save_image(height, width, steps, scales, prompt, seed):
        global pipe
        with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
            try:
                generated_image = pipe(
                    prompt=[prompt],
                    generator=torch.Generator().manual_seed(int(seed)),
                    num_inference_steps=int(steps),
                    guidance_scale=float(scales),
                    height=int(height),
                    width=int(width),
                    max_sequence_length=256
                ).images[0]
                
                # Save the generated image
                saved_path = save_image(generated_image)
                if saved_path is None:
                    print("Warning: Failed to save generated image")
                
                # Return both the generated image and updated gallery
                return generated_image, load_gallery()
            except Exception as e:
                print(f"Error in image generation: {str(e)}")
                return None, load_gallery()
    
    # Connect the generation button to both the image output and gallery update
    def update_seed():
        return get_random_seed()

    generate_btn.click(
        process_and_save_image,
        inputs=[height, width, steps, scales, prompt, seed],
        outputs=[output, gallery]
    )
    
    # Add randomize seed button functionality
    randomize_seed.click(
        update_seed,
        outputs=[seed]
    )
    
    # Also randomize seed after each generation
    generate_btn.click(
        update_seed,
        outputs=[seed]
    )

if __name__ == "__main__":
    demo.launch(allowed_paths=[PERSISTENT_DIR])