Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,172 Bytes
176edce 0b63713 176edce f8844a3 0b63713 ac3894a 176edce 0e7941e 176edce ac3894a 176edce ac3894a 176edce 343fdaf 0b63713 176edce 343fdaf f8844a3 176edce 343fdaf 176edce 343fdaf de7fb8a f8844a3 35695a2 0e7941e f8844a3 0e7941e f8844a3 0e7941e f8844a3 0e7941e f8844a3 de7fb8a 35695a2 5e92500 35695a2 8f39f51 5e92500 35695a2 8f39f51 35695a2 5e92500 0b63713 35695a2 5e92500 35695a2 0b63713 35695a2 66fcae2 35695a2 66fcae2 35695a2 47297cd 35695a2 47297cd 35695a2 47297cd 35695a2 47297cd 35695a2 47297cd 35695a2 47297cd de7fb8a 0b63713 0b34ea3 ac3894a 0b34ea3 ac3894a 0b34ea3 ac3894a 0b34ea3 0b63713 ac3894a 0b63713 0b34ea3 0b63713 0e7941e 0b63713 0e7941e 66fcae2 0e7941e 7b9b23e 0e7941e 3ec2621 0e7941e 3ec2621 18f2392 0e7941e 18f2392 0e7941e f8844a3 18f2392 0e7941e f8844a3 0e7941e 2de95f9 0e7941e 47297cd 0b34ea3 47297cd 0b34ea3 0b63713 35695a2 47297cd 5e92500 0b63713 3ec2621 0b63713 3ec2621 0b34ea3 f8844a3 0b63713 18f2392 3ec2621 0b63713 3ec2621 0b63713 3ec2621 18f2392 343fdaf 176edce ac3894a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
import spaces
import argparse
import os
import time
from os import path
import shutil
from datetime import datetime
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
import gradio as gr
import torch
from diffusers import FluxPipeline
from PIL import Image
# Setup and initialization code
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
# Use PERSISTENT_DIR environment variable for Spaces
PERSISTENT_DIR = os.environ.get("PERSISTENT_DIR", ".")
gallery_path = path.join(PERSISTENT_DIR, "gallery")
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path
torch.backends.cuda.matmul.allow_tf32 = True
# Create gallery directory if it doesn't exist
if not path.exists(gallery_path):
os.makedirs(gallery_path, exist_ok=True)
class timer:
def __init__(self, method_name="timed process"):
self.method = method_name
def __enter__(self):
self.start = time.time()
print(f"{self.method} starts")
def __exit__(self, exc_type, exc_val, exc_tb):
end = time.time()
print(f"{self.method} took {str(round(end - self.start, 2))}s")
# Model initialization
if not path.exists(cache_path):
os.makedirs(cache_path, exist_ok=True)
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"))
pipe.fuse_lora(lora_scale=0.125)
pipe.to(device="cuda", dtype=torch.bfloat16)
css = """
footer {display: none !important}
.gradio-container {
max-width: 1200px;
margin: auto;
}
.contain {
background: rgba(255, 255, 255, 0.05);
border-radius: 12px;
padding: 20px;
}
.generate-btn {
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important;
border: none !important;
color: white !important;
}
.generate-btn:hover {
transform: translateY(-2px);
box-shadow: 0 5px 15px rgba(0,0,0,0.2);
}
.title {
text-align: center;
font-size: 2.5em;
font-weight: bold;
margin-bottom: 1em;
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
}
/* Gallery specific styles */
#gallery {
width: 100% !important;
max-width: 100% !important;
overflow: visible !important;
}
#gallery > div {
width: 100% !important;
max-width: none !important;
}
#gallery > div > div {
width: 100% !important;
display: grid !important;
grid-template-columns: repeat(5, 1fr) !important;
gap: 16px !important;
padding: 16px !important;
}
.gallery-container {
background: rgba(255, 255, 255, 0.05);
border-radius: 8px;
margin-top: 10px;
width: 100% !important;
box-sizing: border-box !important;
}
/* Force gallery items to maintain aspect ratio */
.gallery-item {
width: 100% !important;
aspect-ratio: 1 !important;
overflow: hidden !important;
border-radius: 4px !important;
}
.gallery-item img {
width: 100% !important;
height: 100% !important;
object-fit: cover !important;
border-radius: 4px !important;
transition: transform 0.2s;
}
.gallery-item img:hover {
transform: scale(1.05);
}
/* Force output image container to full width */
.output-image {
width: 100% !important;
max-width: 100% !important;
}
/* Force container widths */
.contain > div {
width: 100% !important;
max-width: 100% !important;
}
.fixed-width {
width: 100% !important;
max-width: 100% !important;
}
/* Remove any horizontal scrolling */
.gallery-container::-webkit-scrollbar {
display: none !important;
}
.gallery-container {
-ms-overflow-style: none !important;
scrollbar-width: none !important;
}
/* Ensure consistent sizing for gallery wrapper */
#gallery > div {
width: 100% !important;
max-width: 100% !important;
}
#gallery > div > div {
width: 100% !important;
max-width: 100% !important;
}
"""
def save_image(image):
"""Save the generated image and return the path"""
try:
# Ensure gallery directory exists
if not os.path.exists(gallery_path):
try:
os.makedirs(gallery_path, exist_ok=True)
except Exception as e:
print(f"Failed to create gallery directory: {str(e)}")
return None
# Generate unique filename with timestamp and random suffix
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
random_suffix = os.urandom(4).hex()
filename = f"generated_{timestamp}_{random_suffix}.png"
filepath = os.path.join(gallery_path, filename)
try:
if isinstance(image, Image.Image):
image.save(filepath, "PNG", quality=100)
else:
image = Image.fromarray(image)
image.save(filepath, "PNG", quality=100)
if not os.path.exists(filepath):
print(f"Warning: Failed to verify saved image at {filepath}")
return None
return filepath
except Exception as e:
print(f"Failed to save image: {str(e)}")
return None
except Exception as e:
print(f"Error in save_image: {str(e)}")
return None
def load_gallery():
"""Load all images from the gallery directory"""
try:
# Ensure gallery directory exists
os.makedirs(gallery_path, exist_ok=True)
# Get all image files and sort by modification time
image_files = []
for f in os.listdir(gallery_path):
if f.lower().endswith(('.png', '.jpg', '.jpeg')):
full_path = os.path.join(gallery_path, f)
image_files.append((full_path, os.path.getmtime(full_path)))
# Sort by modification time (newest first)
image_files.sort(key=lambda x: x[1], reverse=True)
# Return only the file paths
return [f[0] for f in image_files]
except Exception as e:
print(f"Error loading gallery: {str(e)}")
return []
# Create Gradio interface
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
gr.HTML('<div class="title">AI Image Generator</div>')
gr.HTML('<div style="text-align: center; margin-bottom: 2em; color: #666;">Create stunning images from your descriptions</div>')
with gr.Row():
with gr.Column(scale=3):
prompt = gr.Textbox(
label="Image Description",
placeholder="Describe the image you want to create...",
lines=3
)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
height = gr.Slider(
label="Height",
minimum=256,
maximum=1152,
step=64,
value=1024
)
width = gr.Slider(
label="Width",
minimum=256,
maximum=1152,
step=64,
value=1024
)
with gr.Row():
steps = gr.Slider(
label="Inference Steps",
minimum=6,
maximum=25,
step=1,
value=8
)
scales = gr.Slider(
label="Guidance Scale",
minimum=0.0,
maximum=5.0,
step=0.1,
value=3.5
)
def get_random_seed():
return torch.randint(0, 1000000, (1,)).item()
seed = gr.Number(
label="Seed (random by default, set for reproducibility)",
value=get_random_seed(),
precision=0
)
randomize_seed = gr.Button("π² Randomize Seed", elem_classes=["generate-btn"])
generate_btn = gr.Button(
"β¨ Generate Image",
elem_classes=["generate-btn"]
)
gr.HTML("""
<div style="margin-top: 1em; padding: 1em; border-radius: 8px; background: rgba(255, 255, 255, 0.05);">
<h4 style="margin: 0 0 0.5em 0;">Example Prompts:</h4>
<div style="background: rgba(75, 121, 161, 0.1); padding: 1em; border-radius: 8px; margin-bottom: 1em;">
<p style="font-weight: bold; margin: 0 0 0.5em 0;">π
Cinematic Landscape</p>
<p style="margin: 0; font-style: italic;">"A breathtaking mountain vista at golden hour, dramatic sunbeams piercing through clouds, snow-capped peaks reflecting warm light, ultra-high detail photography, artistically composed, award-winning landscape photo, shot on Hasselblad"</p>
</div>
<div style="background: rgba(75, 121, 161, 0.1); padding: 1em; border-radius: 8px; margin-bottom: 1em;">
<p style="font-weight: bold; margin: 0 0 0.5em 0;">πΌοΈ Fantasy Portrait</p>
<p style="margin: 0; font-style: italic;">"Ethereal portrait of an elven queen with flowing silver hair, adorned with luminescent crystals, intricate crown of twisted gold and moonstone, soft ethereal lighting, detailed facial features, fantasy art style, highly detailed, painted by Artgerm and Charlie Bowater"</p>
</div>
<div style="background: rgba(75, 121, 161, 0.1); padding: 1em; border-radius: 8px; margin-bottom: 1em;">
<p style="font-weight: bold; margin: 0 0 0.5em 0;">π Cyberpunk Scene</p>
<p style="margin: 0; font-style: italic;">"Neon-lit cyberpunk street market in rain, holographic advertisements reflecting in puddles, street vendors with glowing cyber-augmentations, dense urban environment, atmospheric fog, cinematic lighting, inspired by Blade Runner 2049"</p>
</div>
<div style="background: rgba(75, 121, 161, 0.1); padding: 1em; border-radius: 8px; margin-bottom: 1em;">
<p style="font-weight: bold; margin: 0 0 0.5em 0;">π¨ Abstract Art</p>
<p style="margin: 0; font-style: italic;">"Vibrant abstract composition of flowing liquid colors, dynamic swirls of iridescent purples and teals, golden geometric patterns emerging from chaos, luxury art style, ultra-detailed, painted in oil on canvas, inspired by James Jean and Gustav Klimt"</p>
</div>
<div style="background: rgba(75, 121, 161, 0.1); padding: 1em; border-radius: 8px; margin-bottom: 1em;">
<p style="font-weight: bold; margin: 0 0 0.5em 0;">πΏ Macro Nature</p>
<p style="margin: 0; font-style: italic;">"Extreme macro photography of a dewdrop on a butterfly wing, rainbow light refraction, crystalline clarity, intricate wing scales visible, natural bokeh background, professional studio lighting, shot with Canon MP-E 65mm lens"</p>
</div>
</div>
""")
with gr.Column(scale=4, elem_classes=["fixed-width"]):
# Current generated image
output = gr.Image(
label="Generated Image",
elem_id="output-image",
elem_classes=["output-image", "fixed-width"]
)
# Gallery of generated images
gallery = gr.Gallery(
label="Generated Images Gallery",
show_label=True,
elem_id="gallery",
columns=[4],
rows=[2],
height="auto",
object_fit="cover",
elem_classes=["gallery-container", "fixed-width"]
)
# Load existing gallery images on startup
gallery.value = load_gallery()
@spaces.GPU
def process_and_save_image(height, width, steps, scales, prompt, seed):
global pipe
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
try:
generated_image = pipe(
prompt=[prompt],
generator=torch.Generator().manual_seed(int(seed)),
num_inference_steps=int(steps),
guidance_scale=float(scales),
height=int(height),
width=int(width),
max_sequence_length=256
).images[0]
# Save the generated image
saved_path = save_image(generated_image)
if saved_path is None:
print("Warning: Failed to save generated image")
# Return both the generated image and updated gallery
return generated_image, load_gallery()
except Exception as e:
print(f"Error in image generation: {str(e)}")
return None, load_gallery()
# Connect the generation button to both the image output and gallery update
def update_seed():
return get_random_seed()
generate_btn.click(
process_and_save_image,
inputs=[height, width, steps, scales, prompt, seed],
outputs=[output, gallery]
)
# Add randomize seed button functionality
randomize_seed.click(
update_seed,
outputs=[seed]
)
# Also randomize seed after each generation
generate_btn.click(
update_seed,
outputs=[seed]
)
if __name__ == "__main__":
demo.launch(allowed_paths=[PERSISTENT_DIR]) |