File size: 7,932 Bytes
176edce
 
 
 
 
0b63713
 
176edce
 
f8844a3
 
 
0b63713
ac3894a
cf46674
 
 
 
176edce
0e7941e
176edce
ac3894a
 
 
176edce
 
 
ac3894a
176edce
343fdaf
0b63713
 
 
 
176edce
 
 
 
 
 
 
 
 
343fdaf
f8844a3
176edce
 
343fdaf
cf46674
 
 
 
 
 
 
 
 
 
 
 
 
 
 
176edce
 
343fdaf
0b63713
 
0b34ea3
ac3894a
 
 
 
 
 
0b34ea3
ac3894a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b34ea3
 
 
ac3894a
0b34ea3
0b63713
 
 
0b34ea3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b63713
0e7941e
30794f2
0e7941e
7b9b23e
0e7941e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ec2621
0e7941e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ec2621
18f2392
 
 
0e7941e
18f2392
 
0e7941e
f8844a3
18f2392
 
0e7941e
 
 
 
f8844a3
47297cd
 
 
 
 
 
 
0b34ea3
0b63713
 
 
 
 
 
 
35695a2
47297cd
5e92500
0b63713
 
3ec2621
 
0b63713
3ec2621
 
0b34ea3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8844a3
18f2392
 
 
3ec2621
0b63713
3ec2621
0b63713
3ec2621
18f2392
 
 
 
 
 
 
 
 
 
343fdaf
176edce
ac3894a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import spaces
import argparse
import os
import time
from os import path
import shutil
from datetime import datetime
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
import gradio as gr
import torch
from diffusers import FluxPipeline
from PIL import Image

# Hugging Face ํ† ํฐ ์„ค์ •
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
    raise ValueError("HF_TOKEN environment variable is not set")

# Setup and initialization code
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
PERSISTENT_DIR = os.environ.get("PERSISTENT_DIR", ".")
gallery_path = path.join(PERSISTENT_DIR, "gallery")

os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path

torch.backends.cuda.matmul.allow_tf32 = True

# Create gallery directory if it doesn't exist
if not path.exists(gallery_path):
    os.makedirs(gallery_path, exist_ok=True)

class timer:
    def __init__(self, method_name="timed process"):
        self.method = method_name
    def __enter__(self):
        self.start = time.time()
        print(f"{self.method} starts")
    def __exit__(self, exc_type, exc_val, exc_tb):
        end = time.time()
        print(f"{self.method} took {str(round(end - self.start, 2))}s")

# Model initialization
if not path.exists(cache_path):
    os.makedirs(cache_path, exist_ok=True)

# ์ธ์ฆ๋œ ๋ชจ๋ธ ๋กœ๋“œ
pipe = FluxPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-dev",
    torch_dtype=torch.bfloat16,
    use_auth_token=HF_TOKEN
)

# Hyper-SD LoRA ๋กœ๋“œ (์ธ์ฆ ํฌํ•จ)
pipe.load_lora_weights(
    hf_hub_download(
        "ByteDance/Hyper-SD",
        "Hyper-FLUX.1-dev-8steps-lora.safetensors",
        use_auth_token=HF_TOKEN
    )
)
pipe.fuse_lora(lora_scale=0.125)
pipe.to(device="cuda", dtype=torch.bfloat16)

def save_image(image):
    """Save the generated image and return the path"""
    try:
        if not os.path.exists(gallery_path):
            try:
                os.makedirs(gallery_path, exist_ok=True)
            except Exception as e:
                print(f"Failed to create gallery directory: {str(e)}")
                return None
        
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        random_suffix = os.urandom(4).hex()
        filename = f"generated_{timestamp}_{random_suffix}.png"
        filepath = os.path.join(gallery_path, filename)
        
        try:
            if isinstance(image, Image.Image):
                image.save(filepath, "PNG", quality=100)
            else:
                image = Image.fromarray(image)
                image.save(filepath, "PNG", quality=100)
            
            if not os.path.exists(filepath):
                print(f"Warning: Failed to verify saved image at {filepath}")
                return None
                
            return filepath
        except Exception as e:
            print(f"Failed to save image: {str(e)}")
            return None
            
    except Exception as e:
        print(f"Error in save_image: {str(e)}")
        return None

def load_gallery():
    """Load all images from the gallery directory"""
    try:
        os.makedirs(gallery_path, exist_ok=True)
        
        image_files = []
        for f in os.listdir(gallery_path):
            if f.lower().endswith(('.png', '.jpg', '.jpeg')):
                full_path = os.path.join(gallery_path, f)
                image_files.append((full_path, os.path.getmtime(full_path)))
        
        image_files.sort(key=lambda x: x[1], reverse=True)
        
        return [f[0] for f in image_files]
    except Exception as e:
        print(f"Error loading gallery: {str(e)}")
        return []

# Create Gradio interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    with gr.Row():
        with gr.Column(scale=3):
            prompt = gr.Textbox(
                label="Image Description",
                placeholder="Describe the image you want to create...",
                lines=3
            )
            
            with gr.Accordion("Advanced Settings", open=False):
                with gr.Row():
                    height = gr.Slider(
                        label="Height",
                        minimum=256,
                        maximum=1152,
                        step=64,
                        value=1024
                    )
                    width = gr.Slider(
                        label="Width",
                        minimum=256,
                        maximum=1152,
                        step=64,
                        value=1024
                    )
                
                with gr.Row():
                    steps = gr.Slider(
                        label="Inference Steps",
                        minimum=6,
                        maximum=25,
                        step=1,
                        value=8
                    )
                    scales = gr.Slider(
                        label="Guidance Scale",
                        minimum=0.0,
                        maximum=5.0,
                        step=0.1,
                        value=3.5
                    )
                
                def get_random_seed():
                    return torch.randint(0, 1000000, (1,)).item()
                
                seed = gr.Number(
                    label="Seed (random by default, set for reproducibility)",
                    value=get_random_seed(),
                    precision=0
                )
                
                randomize_seed = gr.Button("๐ŸŽฒ Randomize Seed", elem_classes=["generate-btn"])
            
            generate_btn = gr.Button(
                "โœจ Generate Image",
                elem_classes=["generate-btn"]
            )

        with gr.Column(scale=4, elem_classes=["fixed-width"]):
            output = gr.Image(
                label="Generated Image",
                elem_id="output-image",
                elem_classes=["output-image", "fixed-width"]
            )
            
            gallery = gr.Gallery(
                label="Generated Images Gallery",
                show_label=True,
                elem_id="gallery",
                columns=[4],
                rows=[2],
                height="auto",
                object_fit="cover",
                elem_classes=["gallery-container", "fixed-width"]
            )
            
            gallery.value = load_gallery()
    
    @spaces.GPU
    def process_and_save_image(height, width, steps, scales, prompt, seed):
        global pipe
        with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
            try:
                generated_image = pipe(
                    prompt=[prompt],
                    generator=torch.Generator().manual_seed(int(seed)),
                    num_inference_steps=int(steps),
                    guidance_scale=float(scales),
                    height=int(height),
                    width=int(width),
                    max_sequence_length=256
                ).images[0]
                
                saved_path = save_image(generated_image)
                if saved_path is None:
                    print("Warning: Failed to save generated image")
                
                return generated_image, load_gallery()
            except Exception as e:
                print(f"Error in image generation: {str(e)}")
                return None, load_gallery()
    
    def update_seed():
        return get_random_seed()

    generate_btn.click(
        process_and_save_image,
        inputs=[height, width, steps, scales, prompt, seed],
        outputs=[output, gallery]
    )
    
    randomize_seed.click(
        update_seed,
        outputs=[seed]
    )
    
    generate_btn.click(
        update_seed,
        outputs=[seed]
    )

if __name__ == "__main__":
    demo.launch(allowed_paths=[PERSISTENT_DIR])