Spaces:
Running
Running
File size: 8,957 Bytes
77961b6 0c7d7d0 77961b6 9e4233f 77961b6 9e4233f 77961b6 3a0ee14 77961b6 3a0ee14 77961b6 3a0ee14 0c7d7d0 9e4233f 3a0ee14 77961b6 3a0ee14 9e4233f 77961b6 3a0ee14 77961b6 3a0ee14 9e4233f 3a0ee14 9e4233f 0c7d7d0 d65e913 0c7d7d0 77961b6 9e4233f 77961b6 0c7d7d0 9e4233f 77961b6 9e4233f 3a0ee14 9e4233f 3a0ee14 9e4233f 3a0ee14 9e4233f 3a0ee14 9e4233f 3a0ee14 9e4233f 3a0ee14 9e4233f 3a0ee14 9e4233f 0c7d7d0 9e4233f 77961b6 9e4233f 3a0ee14 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import datasets
import logging
import json
import pandas as pd
import huggingface_hub
from transformers import pipeline
def get_labels_and_features_from_dataset(dataset_id, dataset_config, split):
try:
ds = datasets.load_dataset(dataset_id, dataset_config)[split]
dataset_features = ds.features
labels = dataset_features["label"].names
features = [f for f in dataset_features.keys() if f != "label"]
return labels, features
except Exception as e:
logging.warning(f"Failed to load dataset {dataset_id} with config {dataset_config}: {e}")
return None, None
def check_model(model_id):
try:
task = huggingface_hub.model_info(model_id).pipeline_tag
except Exception:
return None
try:
ppl = pipeline(task=task, model=model_id)
return ppl
except Exception:
return None
def text_classificaiton_match_label_case_unsensative(id2label_mapping, label):
for model_label in id2label_mapping.keys():
if model_label.upper() == label.upper():
return model_label, label
return None, label
def text_classification_map_model_and_dataset_labels(id2label, dataset_features):
id2label_mapping = {id2label[k]: None for k in id2label.keys()}
dataset_labels = None
for feature in dataset_features.values():
if not isinstance(feature, datasets.ClassLabel):
continue
if len(feature.names) != len(id2label_mapping.keys()):
continue
dataset_labels = feature.names
# Try to match labels
for label in feature.names:
if label in id2label_mapping.keys():
model_label = label
else:
# Try to find case unsensative
model_label, label = text_classificaiton_match_label_case_unsensative(id2label_mapping, label)
if model_label is not None:
id2label_mapping[model_label] = label
else:
print(f"Label {label} is not found in model labels")
return id2label_mapping, dataset_labels
'''
params:
column_mapping: dict
example: {
"text": "sentences",
"label": {
"label0": "LABEL_0",
"label1": "LABEL_1"
}
}
ppl: pipeline
'''
def check_column_mapping_keys_validity(column_mapping, ppl):
# get the element in all the list elements
column_mapping = json.loads(column_mapping)
if "data" not in column_mapping.keys():
return True
user_labels = set([pair[0] for pair in column_mapping["data"]])
model_labels = set([pair[1] for pair in column_mapping["data"]])
id2label = ppl.model.config.id2label
original_labels = set(id2label.values())
return user_labels == model_labels == original_labels
'''
params:
column_mapping: dict
dataset_features: dict
example: {
'text': Value(dtype='string', id=None),
'label': ClassLabel(names=['negative', 'neutral', 'positive'], id=None)
}
'''
def infer_text_input_column(column_mapping, dataset_features):
# Check whether we need to infer the text input column
infer_text_input_column = True
feature_map_df = None
if "text" in column_mapping.keys():
dataset_text_column = column_mapping["text"]
if dataset_text_column in dataset_features.keys():
infer_text_input_column = False
else:
logging.warning(f"Provided {dataset_text_column} is not in Dataset columns")
if infer_text_input_column:
# Try to retrieve one
candidates = [f for f in dataset_features if dataset_features[f].dtype == "string"]
feature_map_df = pd.DataFrame({
"Dataset Features": [candidates[0]],
"Model Input Features": ["text"]
})
if len(candidates) > 0:
logging.debug(f"Candidates are {candidates}")
column_mapping["text"] = candidates[0]
return column_mapping, feature_map_df
'''
params:
column_mapping: dict
id2label_mapping: dict
example:
id2label_mapping: {
'negative': 'negative',
'neutral': 'neutral',
'positive': 'positive'
}
'''
def infer_output_label_column(column_mapping, id2label_mapping, id2label, dataset_labels):
# Check whether we need to infer the output label column
if "data" in column_mapping.keys():
if isinstance(column_mapping["data"], list):
# Use the column mapping passed by user
for user_label, model_label in column_mapping["data"]:
id2label_mapping[model_label] = user_label
elif None in id2label_mapping.values():
column_mapping["label"] = {
i: None for i in id2label.keys()
}
return column_mapping, None
if "data" not in column_mapping.keys():
# Column mapping should contain original model labels
column_mapping["label"] = {
str(i): id2label_mapping[label] for i, label in zip(id2label.keys(), dataset_labels)
}
# print('>>>>> column_mapping >>>>>', column_mapping)
id2label_df = pd.DataFrame({
"Dataset Labels": dataset_labels,
"Model Prediction Labels": [id2label_mapping[label] for label in dataset_labels],
})
return column_mapping, id2label_df
def check_dataset_features_validity(d_id, config, split):
# We assume dataset is ok here
ds = datasets.load_dataset(d_id, config)[split]
try:
dataset_features = ds.features
except AttributeError:
# Dataset does not have features, need to provide everything
return None, None
# Load dataset as DataFrame
df = ds.to_pandas()
return df, dataset_features
def get_example_prediction(ppl, dataset_id, dataset_config, dataset_split):
# get a sample prediction from the model on the dataset
prediction_input = None
prediction_result = None
try:
# Use the first item to test prediction
ds = datasets.load_dataset(dataset_id, dataset_config)[dataset_split]
if "text" not in ds.features.keys():
# Dataset does not have text column
prediction_input = ds[0][ds.features.keys()[0]]
else:
prediction_input = ds[0]["text"]
print('prediction_input', prediction_input)
results = ppl(prediction_input, top_k=None)
# Display results in original label and mapped label
prediction_result = {
f'{result["label"]}': result["score"] for result in results
}
except Exception:
# Pipeline prediction failed, need to provide labels
return prediction_input, None
return prediction_input, prediction_result
def get_sample_prediction(ppl, df, column_mapping, id2label_mapping):
# get a sample prediction from the model on the dataset
prediction_input = None
prediction_result = None
try:
# Use the first item to test prediction
prediction_input = df.head(1).at[0, column_mapping["text"]]
results = ppl({"text": prediction_input}, top_k=None)
prediction_result = {
f'{result["label"]}': result["score"] for result in results
}
except Exception:
# Pipeline prediction failed, need to provide labels
return prediction_input, None
# Display results in original label and mapped label
prediction_result = {
f'{result["label"]}(original) - {id2label_mapping[result["label"]]}(mapped)': result["score"] for result in results
}
return prediction_input, prediction_result
def text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, split):
# load dataset as pd DataFrame
# get features column from dataset
df, dataset_features = check_dataset_features_validity(d_id, config, split)
column_mapping, feature_map_df = infer_text_input_column(column_mapping, dataset_features)
if feature_map_df is None:
# dataset does not have any features
return None, None, None, None, None
# Retrieve all labels
id2label = ppl.model.config.id2label
# Infer labels
id2label_mapping, dataset_labels = text_classification_map_model_and_dataset_labels(id2label, dataset_features)
column_mapping, id2label_df = infer_output_label_column(column_mapping, id2label_mapping, id2label, dataset_labels)
if id2label_df is None:
# does not able to infer output label column
return column_mapping, None, None, None, feature_map_df
# Get a sample prediction
prediction_input, prediction_result = get_sample_prediction(ppl, df, column_mapping, id2label_mapping)
if prediction_result is None:
# does not able to get a sample prediction
return column_mapping, prediction_input, None, id2label_df, feature_map_df
return column_mapping, prediction_input, prediction_result, id2label_df, feature_map_df
|