Spaces:
Running
Running
File size: 13,808 Bytes
3573a39 8f809e2 3573a39 8f809e2 73ca636 4045dfc 3573a39 8f809e2 3573a39 53fe897 8f809e2 53fe897 3573a39 5b8d6d5 8f809e2 3573a39 e163df8 a0a107f 8f809e2 61fc9c6 983e75b 4045dfc 107357d 983e75b 61fc9c6 a89f9d8 53fe897 8f809e2 3573a39 53fe897 8f809e2 53fe897 8f809e2 53fe897 5559b52 53fe897 5559b52 53fe897 5559b52 53fe897 8f809e2 58c39e0 5b8d6d5 1c00552 58c39e0 1c00552 58c39e0 3573a39 1c00552 58c39e0 1c00552 58c39e0 f25dac2 136af2d 5b8d6d5 8f809e2 5b8d6d5 f25dac2 8f809e2 136af2d 8f809e2 f25dac2 5b8d6d5 f25dac2 5b8d6d5 f25dac2 5b8d6d5 8f809e2 5b8d6d5 3573a39 5b8d6d5 3573a39 5b8d6d5 3573a39 8f809e2 5b8d6d5 8f809e2 3573a39 5b8d6d5 8f809e2 f25dac2 5b8d6d5 5559b52 5b8d6d5 5559b52 5b8d6d5 5559b52 3573a39 f25dac2 5b8d6d5 1dcb2d8 3573a39 8f809e2 5b8d6d5 5559b52 3573a39 8f809e2 3573a39 8f809e2 5b8d6d5 3573a39 8f809e2 3573a39 8f809e2 1c00552 8f809e2 5b8d6d5 5559b52 3573a39 8f809e2 3573a39 8f809e2 5b8d6d5 8f809e2 3573a39 8f809e2 1c00552 8f809e2 1dcb2d8 5559b52 3573a39 8f809e2 3573a39 8f809e2 5704515 8f809e2 1dcb2d8 5559b52 3573a39 8f809e2 f25dac2 5b8d6d5 8f809e2 5b8d6d5 f25dac2 5b8d6d5 afd881d 58c39e0 afd881d 3573a39 8f809e2 5b8d6d5 f25dac2 5b8d6d5 8f809e2 1c00552 61fc9c6 f25dac2 5b8d6d5 1c00552 8f809e2 5b8d6d5 02f1357 5b8d6d5 f25dac2 5b8d6d5 02f1357 5b8d6d5 8f809e2 5b8d6d5 73ca636 5b8d6d5 73ca636 5b8d6d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
import collections
import json
import logging
import os
import threading
import uuid
import leaderboard
import datasets
import gradio as gr
import pandas as pd
from transformers.pipelines import TextClassificationPipeline
from io_utils import (
get_yaml_path,
read_column_mapping,
save_job_to_pipe,
write_column_mapping,
write_log_to_user_file,
)
from text_classification import (
check_model,
get_example_prediction,
get_labels_and_features_from_dataset,
)
from wordings import (
CHECK_CONFIG_OR_SPLIT_RAW,
CONFIRM_MAPPING_DETAILS_FAIL_RAW,
MAPPING_STYLED_ERROR_WARNING,
get_styled_input,
)
MAX_LABELS = 40
MAX_FEATURES = 20
HF_REPO_ID = "HF_REPO_ID"
HF_SPACE_ID = "SPACE_ID"
HF_WRITE_TOKEN = "HF_WRITE_TOKEN"
HF_GSK_HUB_URL = "GSK_HUB_URL"
HF_GSK_HUB_PROJECT_KEY = "GSK_HUB_PROJECT_KEY"
HF_GSK_HUB_KEY = "GSK_API_KEY"
HF_GSK_HUB_HF_TOKEN = "GSK_HF_TOKEN"
HF_GSK_HUB_UNLOCK_TOKEN = "GSK_HUB_UNLOCK_TOKEN"
LEADERBOARD = "giskard-bot/evaluator-leaderboard"
def get_related_datasets_from_leaderboard(model_id):
records = leaderboard.records
model_records = records[records["model_id"] == model_id]
datasets_unique = model_records["dataset_id"].unique()
if len(datasets_unique) == 0:
all_unique_datasets = list(records["dataset_id"].unique())
print(type(all_unique_datasets), all_unique_datasets)
return gr.update(choices=all_unique_datasets, value="")
return gr.update(choices=datasets_unique, value=datasets_unique[0])
logger = logging.getLogger(__file__)
def check_dataset(dataset_id, dataset_config=None, dataset_split=None):
configs = ["default"]
splits = ["default"]
logger.info(f"Loading {dataset_id}, {dataset_config}, {dataset_split}")
try:
configs = datasets.get_dataset_config_names(dataset_id)
splits = list(
datasets.load_dataset(
dataset_id, configs[0] if not dataset_config else dataset_config
).keys()
)
if dataset_config == None:
dataset_config = configs[0]
dataset_split = splits[0]
elif dataset_split == None:
dataset_split = splits[0]
except Exception as e:
# Dataset may not exist
logger.warn(
f"Failed to load dataset {dataset_id} with config {dataset_config}: {e}"
)
if dataset_config == None:
return (
gr.Dropdown(configs, value=configs[0], visible=True),
gr.Dropdown(splits, value=splits[0], visible=True),
gr.DataFrame(pd.DataFrame(), visible=False),
"",
)
elif dataset_split == None:
return (
gr.Dropdown(configs, value=dataset_config, visible=True),
gr.Dropdown(splits, value=splits[0], visible=True),
gr.DataFrame(pd.DataFrame(), visible=False),
"",
)
dataset_dict = datasets.load_dataset(dataset_id, dataset_config)
dataframe: pd.DataFrame = dataset_dict[dataset_split].to_pandas().head(5)
return (
gr.Dropdown(configs, value=dataset_config, visible=True),
gr.Dropdown(splits, value=dataset_split, visible=True),
gr.DataFrame(dataframe, visible=True),
"",
)
def select_run_mode(run_inf):
if run_inf:
return (gr.update(visible=True), gr.update(value=False))
else:
return (gr.update(visible=False), gr.update(value=True))
def deselect_run_inference(run_local):
if run_local:
return (gr.update(visible=False), gr.update(value=False))
else:
return (gr.update(visible=True), gr.update(value=True))
def write_column_mapping_to_config(uid, *labels):
# TODO: Substitute 'text' with more features for zero-shot
# we are not using ds features because we only support "text" for now
all_mappings = read_column_mapping(uid)
if labels is None:
return
all_mappings = export_mappings(all_mappings, "labels", None, labels[:MAX_LABELS])
all_mappings = export_mappings(
all_mappings,
"features",
["text"],
labels[MAX_LABELS : (MAX_LABELS + MAX_FEATURES)],
)
write_column_mapping(all_mappings, uid)
def export_mappings(all_mappings, key, subkeys, values):
if key not in all_mappings.keys():
all_mappings[key] = dict()
if subkeys is None:
subkeys = list(all_mappings[key].keys())
if not subkeys:
logging.debug(f"subkeys is empty for {key}")
return all_mappings
for i, subkey in enumerate(subkeys):
if subkey:
all_mappings[key][subkey] = values[i % len(values)]
return all_mappings
def list_labels_and_features_from_dataset(ds_labels, ds_features, model_id2label, uid):
model_labels = list(model_id2label.values())
all_mappings = read_column_mapping(uid)
# For flattened raw datasets with no labels
# check if there are shared labels between model and dataset
shared_labels = set(model_labels).intersection(set(ds_labels))
if shared_labels:
ds_labels = list(shared_labels)
if len(ds_labels) > MAX_LABELS:
ds_labels = ds_labels[:MAX_LABELS]
gr.Warning(f"The number of labels is truncated to length {MAX_LABELS}")
ds_labels.sort()
model_labels.sort()
lables = [
gr.Dropdown(
label=f"{label}",
choices=model_labels,
value=model_id2label[i % len(model_labels)],
interactive=True,
visible=True,
)
for i, label in enumerate(ds_labels)
]
lables += [gr.Dropdown(visible=False) for _ in range(MAX_LABELS - len(lables))]
all_mappings = export_mappings(all_mappings, "labels", ds_labels, model_labels)
# TODO: Substitute 'text' with more features for zero-shot
features = [
gr.Dropdown(
label=f"{feature}",
choices=ds_features,
value=ds_features[0],
interactive=True,
visible=True,
)
for feature in ["text"]
]
features += [
gr.Dropdown(visible=False) for _ in range(MAX_FEATURES - len(features))
]
all_mappings = export_mappings(all_mappings, "features", ["text"], ds_features)
write_column_mapping(all_mappings, uid)
return lables + features
def precheck_model_ds_enable_example_btn(
model_id, dataset_id, dataset_config, dataset_split
):
ppl = check_model(model_id)
if ppl is None or not isinstance(ppl, TextClassificationPipeline):
gr.Warning("Please check your model.")
return gr.update(interactive=False), ""
ds_labels, ds_features = get_labels_and_features_from_dataset(
dataset_id, dataset_config, dataset_split
)
if not isinstance(ds_labels, list) or not isinstance(ds_features, list):
gr.Warning(CHECK_CONFIG_OR_SPLIT_RAW)
return gr.update(interactive=False), ""
return gr.update(interactive=True), ""
def align_columns_and_show_prediction(
model_id, dataset_id, dataset_config, dataset_split, uid, run_inference, inference_token
):
ppl = check_model(model_id)
if ppl is None or not isinstance(ppl, TextClassificationPipeline):
gr.Warning("Please check your model.")
return (
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False, open=False),
gr.update(interactive=False),
"",
*[gr.update(visible=False) for _ in range(MAX_LABELS + MAX_FEATURES)],
)
dropdown_placement = [
gr.Dropdown(visible=False) for _ in range(MAX_LABELS + MAX_FEATURES)
]
if ppl is None: # pipeline not found
gr.Warning("Model not found")
return (
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False, open=False),
gr.update(interactive=False),
*dropdown_placement,
)
model_id2label = ppl.model.config.id2label
ds_labels, ds_features = get_labels_and_features_from_dataset(
dataset_id, dataset_config, dataset_split
)
# when dataset does not have labels or features
if not isinstance(ds_labels, list) or not isinstance(ds_features, list):
gr.Warning(CHECK_CONFIG_OR_SPLIT_RAW)
return (
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False, open=False),
gr.update(interactive=False),
"",
*dropdown_placement,
)
column_mappings = list_labels_and_features_from_dataset(
ds_labels,
ds_features,
model_id2label,
uid,
)
# when labels or features are not aligned
# show manually column mapping
if (
collections.Counter(model_id2label.values()) != collections.Counter(ds_labels)
or ds_features[0] != "text"
):
return (
gr.update(value=MAPPING_STYLED_ERROR_WARNING, visible=True),
gr.update(visible=False),
gr.update(visible=True, open=True),
gr.update(interactive=(run_inference and inference_token != "")),
"",
*column_mappings,
)
prediction_input, prediction_output = get_example_prediction(
ppl, dataset_id, dataset_config, dataset_split
)
return (
gr.update(value=get_styled_input(prediction_input), visible=True),
gr.update(value=prediction_output, visible=True),
gr.update(visible=True, open=False),
gr.update(interactive=(run_inference and inference_token != "")),
"",
*column_mappings,
)
def check_column_mapping_keys_validity(all_mappings):
if all_mappings is None:
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
return (gr.update(interactive=True), gr.update(visible=False))
if "labels" not in all_mappings.keys():
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
return (gr.update(interactive=True), gr.update(visible=False))
def construct_label_and_feature_mapping(all_mappings):
label_mapping = {}
for i, label in zip(
range(len(all_mappings["labels"].keys())), all_mappings["labels"].keys()
):
label_mapping.update({str(i): label})
if "features" not in all_mappings.keys():
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
return (gr.update(interactive=True), gr.update(visible=False))
feature_mapping = all_mappings["features"]
return label_mapping, feature_mapping
def try_submit(m_id, d_id, config, split, local, inference, inference_token, uid):
all_mappings = read_column_mapping(uid)
check_column_mapping_keys_validity(all_mappings)
label_mapping, feature_mapping = construct_label_and_feature_mapping(all_mappings)
leaderboard_dataset = None
if os.environ.get("SPACE_ID") == "giskardai/giskard-evaluator":
leaderboard_dataset = LEADERBOARD
if local:
inference_type = "hf_pipeline"
if inference and inference_token:
inference_type = "hf_inference_api"
# TODO: Set column mapping for some dataset such as `amazon_polarity`
command = [
"giskard_scanner",
"--loader",
"huggingface",
"--model",
m_id,
"--dataset",
d_id,
"--dataset_config",
config,
"--dataset_split",
split,
"--output_format",
"markdown",
"--output_portal",
"huggingface",
"--feature_mapping",
json.dumps(feature_mapping),
"--label_mapping",
json.dumps(label_mapping),
"--scan_config",
get_yaml_path(uid),
"--inference_type",
inference_type,
"--inference_api_token",
inference_token,
]
# The token to publish post
if os.environ.get(HF_WRITE_TOKEN):
command.append("--hf_token")
command.append(os.environ.get(HF_WRITE_TOKEN))
# The repo to publish post
if os.environ.get(HF_REPO_ID) or os.environ.get(HF_SPACE_ID):
command.append("--discussion_repo")
# TODO: Replace by the model id
command.append(os.environ.get(HF_REPO_ID) or os.environ.get(HF_SPACE_ID))
# The repo to publish for ranking
if leaderboard_dataset:
command.append("--leaderboard_dataset")
command.append(leaderboard_dataset)
# The info to upload to Giskard hub
if os.environ.get(HF_GSK_HUB_KEY):
command.append("--giskard_hub_api_key")
command.append(os.environ.get(HF_GSK_HUB_KEY))
if os.environ.get(HF_GSK_HUB_URL):
command.append("--giskard_hub_url")
command.append(os.environ.get(HF_GSK_HUB_URL))
if os.environ.get(HF_GSK_HUB_PROJECT_KEY):
command.append("--giskard_hub_project_key")
command.append(os.environ.get(HF_GSK_HUB_PROJECT_KEY))
if os.environ.get(HF_GSK_HUB_HF_TOKEN):
command.append("--giskard_hub_hf_token")
command.append(os.environ.get(HF_GSK_HUB_HF_TOKEN))
if os.environ.get(HF_GSK_HUB_UNLOCK_TOKEN):
command.append("--giskard_hub_unlock_token")
command.append(os.environ.get(HF_GSK_HUB_UNLOCK_TOKEN))
eval_str = f"[{m_id}]<{d_id}({config}, {split} set)>"
logging.info(f"Start local evaluation on {eval_str}")
save_job_to_pipe(uid, command, eval_str, threading.Lock())
write_log_to_user_file(
uid,
f"Start local evaluation on {eval_str}. Please wait for your job to start...\n",
)
gr.Info(f"Start local evaluation on {eval_str}")
return (
gr.update(interactive=False), # Submit button
gr.update(lines=5, visible=True, interactive=False),
uuid.uuid4(), # Allocate a new uuid
)
|