Spaces:
Running
Running
GSK-2396-allow-edit-feature-mappings
#12
by
ZeroCommand
- opened
- app.py +69 -41
- config.yaml +9 -0
- text_classification.py +56 -34
- utils.py +54 -0
app.py
CHANGED
@@ -11,13 +11,12 @@ import json
|
|
11 |
from transformers.pipelines import TextClassificationPipeline
|
12 |
|
13 |
from text_classification import check_column_mapping_keys_validity, text_classification_fix_column_mapping
|
14 |
-
|
15 |
|
16 |
HF_REPO_ID = 'HF_REPO_ID'
|
17 |
HF_SPACE_ID = 'SPACE_ID'
|
18 |
HF_WRITE_TOKEN = 'HF_WRITE_TOKEN'
|
19 |
|
20 |
-
|
21 |
theme = gr.themes.Soft(
|
22 |
primary_hue="green",
|
23 |
)
|
@@ -70,6 +69,7 @@ def try_validate(m_id, ppl, dataset_id, dataset_config, dataset_split, column_ma
|
|
70 |
gr.update(visible=False), # Model prediction input
|
71 |
gr.update(visible=False), # Model prediction preview
|
72 |
gr.update(visible=False), # Label mapping preview
|
|
|
73 |
)
|
74 |
if isinstance(ppl, Exception):
|
75 |
gr.Warning(f'Failed to load model": {ppl}')
|
@@ -80,6 +80,7 @@ def try_validate(m_id, ppl, dataset_id, dataset_config, dataset_split, column_ma
|
|
80 |
gr.update(visible=False), # Model prediction input
|
81 |
gr.update(visible=False), # Model prediction preview
|
82 |
gr.update(visible=False), # Label mapping preview
|
|
|
83 |
)
|
84 |
|
85 |
# Validate dataset
|
@@ -105,7 +106,7 @@ def try_validate(m_id, ppl, dataset_id, dataset_config, dataset_split, column_ma
|
|
105 |
gr.update(visible=False), # Model prediction input
|
106 |
gr.update(visible=False), # Model prediction preview
|
107 |
gr.update(visible=False), # Label mapping preview
|
108 |
-
|
109 |
)
|
110 |
|
111 |
# TODO: Validate column mapping by running once
|
@@ -118,21 +119,21 @@ def try_validate(m_id, ppl, dataset_id, dataset_config, dataset_split, column_ma
|
|
118 |
except Exception:
|
119 |
column_mapping = {}
|
120 |
|
121 |
-
column_mapping, prediction_input, prediction_result, id2label_df = \
|
122 |
text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, split)
|
123 |
|
124 |
column_mapping = json.dumps(column_mapping, indent=2)
|
125 |
|
126 |
-
if prediction_result is None:
|
127 |
gr.Warning('The model failed to predict with the first row in the dataset. Please provide column mappings in "Advance" settings.')
|
128 |
return (
|
129 |
gr.update(interactive=False), # Submit button
|
130 |
-
gr.update(visible=
|
131 |
-
gr.update(visible=
|
132 |
-
gr.update(visible=
|
133 |
gr.update(visible=False), # Model prediction preview
|
134 |
-
gr.update(visible=
|
135 |
-
|
136 |
)
|
137 |
elif id2label_df is None:
|
138 |
gr.Warning('The prediction result does not conform the labels in the dataset. Please provide label mappings in "Advance" settings.')
|
@@ -142,8 +143,8 @@ def try_validate(m_id, ppl, dataset_id, dataset_config, dataset_split, column_ma
|
|
142 |
gr.update(visible=True), # Preview row
|
143 |
gr.update(value=f'**Sample Input**: {prediction_input}', visible=True), # Model prediction input
|
144 |
gr.update(value=prediction_result, visible=True), # Model prediction preview
|
145 |
-
gr.update(visible=
|
146 |
-
|
147 |
)
|
148 |
|
149 |
gr.Info("Model and dataset validations passed. Your can submit the evaluation task.")
|
@@ -155,13 +156,18 @@ def try_validate(m_id, ppl, dataset_id, dataset_config, dataset_split, column_ma
|
|
155 |
gr.update(value=f'**Sample Input**: {prediction_input}', visible=True), # Model prediction input
|
156 |
gr.update(value=prediction_result, visible=True), # Model prediction preview
|
157 |
gr.update(value=id2label_df, visible=True, interactive=True), # Label mapping preview
|
|
|
158 |
)
|
159 |
|
160 |
|
161 |
-
def try_submit(m_id, d_id, config, split,
|
162 |
label_mapping = {}
|
163 |
-
for i, label in
|
164 |
label_mapping.update({str(i): label})
|
|
|
|
|
|
|
|
|
165 |
|
166 |
# TODO: Set column mapping for some dataset such as `amazon_polarity`
|
167 |
|
@@ -178,8 +184,9 @@ def try_submit(m_id, d_id, config, split, column_mappings, local):
|
|
178 |
"--discussion_repo", os.environ.get(HF_REPO_ID) or os.environ.get(HF_SPACE_ID),
|
179 |
"--output_format", "markdown",
|
180 |
"--output_portal", "huggingface",
|
181 |
-
|
182 |
"--label_mapping", json.dumps(label_mapping),
|
|
|
183 |
]
|
184 |
|
185 |
eval_str = f"[{m_id}]<{d_id}({config}, {split} set)>"
|
@@ -221,12 +228,15 @@ with gr.Blocks(theme=theme) as iface:
|
|
221 |
gr.Warning(f"Failed to load dataset {dataset_id} with config {dataset_config}: {e}")
|
222 |
pass
|
223 |
|
224 |
-
def gate_validate_btn(model_id, dataset_id, dataset_config, dataset_split, id2label_mapping_dataframe=None):
|
225 |
column_mapping = '{}'
|
226 |
-
|
227 |
|
228 |
if id2label_mapping_dataframe is not None:
|
229 |
-
|
|
|
|
|
|
|
230 |
if check_column_mapping_keys_validity(column_mapping, ppl) is False:
|
231 |
gr.Warning('Label mapping table has invalid contents. Please check again.')
|
232 |
return (gr.update(interactive=False),
|
@@ -234,18 +244,18 @@ with gr.Blocks(theme=theme) as iface:
|
|
234 |
gr.update(),
|
235 |
gr.update(),
|
236 |
gr.update(),
|
|
|
237 |
gr.update())
|
238 |
else:
|
239 |
if model_id and dataset_id and dataset_config and dataset_split:
|
240 |
-
return try_validate(
|
241 |
else:
|
242 |
-
del ppl
|
243 |
-
|
244 |
return (gr.update(interactive=False),
|
245 |
gr.update(visible=True),
|
246 |
gr.update(visible=False),
|
247 |
gr.update(visible=False),
|
248 |
gr.update(visible=False),
|
|
|
249 |
gr.update(visible=False))
|
250 |
with gr.Row():
|
251 |
gr.Markdown('''
|
@@ -256,6 +266,13 @@ with gr.Blocks(theme=theme) as iface:
|
|
256 |
''')
|
257 |
with gr.Row():
|
258 |
run_local = gr.Checkbox(value=True, label="Run in this Space")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
|
260 |
with gr.Row():
|
261 |
model_id_input = gr.Textbox(
|
@@ -271,30 +288,32 @@ with gr.Blocks(theme=theme) as iface:
|
|
271 |
dataset_config_input = gr.Dropdown(['default'], value='default', label='Dataset Config', visible=False)
|
272 |
dataset_split_input = gr.Dropdown(['default'], value='default', label='Dataset Split', visible=False)
|
273 |
|
274 |
-
dataset_id_input.
|
275 |
-
|
|
|
|
|
276 |
check_dataset_and_get_split,
|
277 |
inputs=[dataset_config_input, dataset_id_input],
|
278 |
outputs=[dataset_split_input])
|
279 |
|
280 |
with gr.Row(visible=True) as loading_row:
|
281 |
gr.Markdown('''
|
282 |
-
<
|
283 |
-
Please validate your model and dataset first...
|
284 |
-
</
|
285 |
''')
|
286 |
-
|
287 |
with gr.Row(visible=False) as preview_row:
|
288 |
gr.Markdown('''
|
289 |
<h1 style="text-align: center;">
|
290 |
-
Confirm
|
291 |
</h1>
|
292 |
-
Base on your model and dataset, we inferred this label mapping.
|
293 |
''')
|
294 |
|
295 |
with gr.Row():
|
296 |
id2label_mapping_dataframe = gr.DataFrame(label="Preview of label mapping", interactive=True, visible=False)
|
297 |
-
|
298 |
with gr.Row():
|
299 |
example_input = gr.Markdown('Sample Input: ', visible=False)
|
300 |
|
@@ -308,22 +327,30 @@ with gr.Blocks(theme=theme) as iface:
|
|
308 |
size="lg",
|
309 |
)
|
310 |
|
311 |
-
model_id_input.
|
312 |
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
313 |
-
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe])
|
314 |
-
dataset_id_input.
|
315 |
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
316 |
-
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe])
|
317 |
-
dataset_config_input.
|
318 |
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
319 |
-
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe])
|
320 |
-
dataset_split_input.
|
321 |
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
322 |
-
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe])
|
323 |
id2label_mapping_dataframe.input(gate_validate_btn,
|
324 |
-
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input, id2label_mapping_dataframe],
|
325 |
-
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe])
|
326 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
327 |
run_btn.click(
|
328 |
try_submit,
|
329 |
inputs=[
|
@@ -332,6 +359,7 @@ with gr.Blocks(theme=theme) as iface:
|
|
332 |
dataset_config_input,
|
333 |
dataset_split_input,
|
334 |
id2label_mapping_dataframe,
|
|
|
335 |
run_local,
|
336 |
],
|
337 |
outputs=[
|
|
|
11 |
from transformers.pipelines import TextClassificationPipeline
|
12 |
|
13 |
from text_classification import check_column_mapping_keys_validity, text_classification_fix_column_mapping
|
14 |
+
from utils import read_scanners, write_scanners, read_inference_type, write_inference_type, convert_column_mapping_to_json
|
15 |
|
16 |
HF_REPO_ID = 'HF_REPO_ID'
|
17 |
HF_SPACE_ID = 'SPACE_ID'
|
18 |
HF_WRITE_TOKEN = 'HF_WRITE_TOKEN'
|
19 |
|
|
|
20 |
theme = gr.themes.Soft(
|
21 |
primary_hue="green",
|
22 |
)
|
|
|
69 |
gr.update(visible=False), # Model prediction input
|
70 |
gr.update(visible=False), # Model prediction preview
|
71 |
gr.update(visible=False), # Label mapping preview
|
72 |
+
gr.update(visible=False), # feature mapping preview
|
73 |
)
|
74 |
if isinstance(ppl, Exception):
|
75 |
gr.Warning(f'Failed to load model": {ppl}')
|
|
|
80 |
gr.update(visible=False), # Model prediction input
|
81 |
gr.update(visible=False), # Model prediction preview
|
82 |
gr.update(visible=False), # Label mapping preview
|
83 |
+
gr.update(visible=False), # feature mapping preview
|
84 |
)
|
85 |
|
86 |
# Validate dataset
|
|
|
106 |
gr.update(visible=False), # Model prediction input
|
107 |
gr.update(visible=False), # Model prediction preview
|
108 |
gr.update(visible=False), # Label mapping preview
|
109 |
+
gr.update(visible=False), # feature mapping preview
|
110 |
)
|
111 |
|
112 |
# TODO: Validate column mapping by running once
|
|
|
119 |
except Exception:
|
120 |
column_mapping = {}
|
121 |
|
122 |
+
column_mapping, prediction_input, prediction_result, id2label_df, feature_df = \
|
123 |
text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, split)
|
124 |
|
125 |
column_mapping = json.dumps(column_mapping, indent=2)
|
126 |
|
127 |
+
if prediction_result is None and id2label_df is not None:
|
128 |
gr.Warning('The model failed to predict with the first row in the dataset. Please provide column mappings in "Advance" settings.')
|
129 |
return (
|
130 |
gr.update(interactive=False), # Submit button
|
131 |
+
gr.update(visible=False), # Loading row
|
132 |
+
gr.update(visible=True), # Preview row
|
133 |
+
gr.update(value=f'**Sample Input**: {prediction_input}', visible=True), # Model prediction input
|
134 |
gr.update(visible=False), # Model prediction preview
|
135 |
+
gr.update(value=id2label_df, visible=True, interactive=True), # Label mapping preview
|
136 |
+
gr.update(value=feature_df, visible=True, interactive=True), # feature mapping preview
|
137 |
)
|
138 |
elif id2label_df is None:
|
139 |
gr.Warning('The prediction result does not conform the labels in the dataset. Please provide label mappings in "Advance" settings.')
|
|
|
143 |
gr.update(visible=True), # Preview row
|
144 |
gr.update(value=f'**Sample Input**: {prediction_input}', visible=True), # Model prediction input
|
145 |
gr.update(value=prediction_result, visible=True), # Model prediction preview
|
146 |
+
gr.update(visible=True, interactive=True), # Label mapping preview
|
147 |
+
gr.update(visible=True, interactive=True), # feature mapping preview
|
148 |
)
|
149 |
|
150 |
gr.Info("Model and dataset validations passed. Your can submit the evaluation task.")
|
|
|
156 |
gr.update(value=f'**Sample Input**: {prediction_input}', visible=True), # Model prediction input
|
157 |
gr.update(value=prediction_result, visible=True), # Model prediction preview
|
158 |
gr.update(value=id2label_df, visible=True, interactive=True), # Label mapping preview
|
159 |
+
gr.update(value=feature_df, visible=True, interactive=True), # feature mapping preview
|
160 |
)
|
161 |
|
162 |
|
163 |
+
def try_submit(m_id, d_id, config, split, id2label_mapping_dataframe, feature_mapping_dataframe, local):
|
164 |
label_mapping = {}
|
165 |
+
for i, label in id2label_mapping_dataframe["Model Prediction Labels"].items():
|
166 |
label_mapping.update({str(i): label})
|
167 |
+
|
168 |
+
feature_mapping = {}
|
169 |
+
for i, feature in feature_mapping_dataframe["Dataset Features"].items():
|
170 |
+
feature_mapping.update({feature_mapping_dataframe["Model Input Features"][i]: feature})
|
171 |
|
172 |
# TODO: Set column mapping for some dataset such as `amazon_polarity`
|
173 |
|
|
|
184 |
"--discussion_repo", os.environ.get(HF_REPO_ID) or os.environ.get(HF_SPACE_ID),
|
185 |
"--output_format", "markdown",
|
186 |
"--output_portal", "huggingface",
|
187 |
+
"--feature_mapping", json.dumps(feature_mapping),
|
188 |
"--label_mapping", json.dumps(label_mapping),
|
189 |
+
"--scan_config", "./config.yaml",
|
190 |
]
|
191 |
|
192 |
eval_str = f"[{m_id}]<{d_id}({config}, {split} set)>"
|
|
|
228 |
gr.Warning(f"Failed to load dataset {dataset_id} with config {dataset_config}: {e}")
|
229 |
pass
|
230 |
|
231 |
+
def gate_validate_btn(model_id, dataset_id, dataset_config, dataset_split, id2label_mapping_dataframe=None, feature_mapping_dataframe=None):
|
232 |
column_mapping = '{}'
|
233 |
+
_, ppl = check_model(model_id=model_id)
|
234 |
|
235 |
if id2label_mapping_dataframe is not None:
|
236 |
+
labels = convert_column_mapping_to_json(id2label_mapping_dataframe.value, label="data")
|
237 |
+
features = convert_column_mapping_to_json(feature_mapping_dataframe.value, label="text")
|
238 |
+
column_mapping = json.dumps({**labels, **features}, indent=2)
|
239 |
+
|
240 |
if check_column_mapping_keys_validity(column_mapping, ppl) is False:
|
241 |
gr.Warning('Label mapping table has invalid contents. Please check again.')
|
242 |
return (gr.update(interactive=False),
|
|
|
244 |
gr.update(),
|
245 |
gr.update(),
|
246 |
gr.update(),
|
247 |
+
gr.update(),
|
248 |
gr.update())
|
249 |
else:
|
250 |
if model_id and dataset_id and dataset_config and dataset_split:
|
251 |
+
return try_validate(model_id, ppl, dataset_id, dataset_config, dataset_split, column_mapping)
|
252 |
else:
|
|
|
|
|
253 |
return (gr.update(interactive=False),
|
254 |
gr.update(visible=True),
|
255 |
gr.update(visible=False),
|
256 |
gr.update(visible=False),
|
257 |
gr.update(visible=False),
|
258 |
+
gr.update(visible=False),
|
259 |
gr.update(visible=False))
|
260 |
with gr.Row():
|
261 |
gr.Markdown('''
|
|
|
266 |
''')
|
267 |
with gr.Row():
|
268 |
run_local = gr.Checkbox(value=True, label="Run in this Space")
|
269 |
+
use_inference = read_inference_type('./config.yaml') == 'hf_inference_api'
|
270 |
+
run_inference = gr.Checkbox(value=use_inference, label="Run with Inference API")
|
271 |
+
|
272 |
+
with gr.Row() as advanced_row:
|
273 |
+
selected = read_scanners('./config.yaml')
|
274 |
+
scan_config = selected + ['data_leakage']
|
275 |
+
scanners = gr.CheckboxGroup(choices=scan_config, value=selected, label='Scan Settings', visible=True)
|
276 |
|
277 |
with gr.Row():
|
278 |
model_id_input = gr.Textbox(
|
|
|
288 |
dataset_config_input = gr.Dropdown(['default'], value='default', label='Dataset Config', visible=False)
|
289 |
dataset_split_input = gr.Dropdown(['default'], value='default', label='Dataset Split', visible=False)
|
290 |
|
291 |
+
dataset_id_input.blur(check_dataset_and_get_config, dataset_id_input, dataset_config_input)
|
292 |
+
dataset_id_input.submit(check_dataset_and_get_config, dataset_id_input, dataset_config_input)
|
293 |
+
|
294 |
+
dataset_config_input.blur(
|
295 |
check_dataset_and_get_split,
|
296 |
inputs=[dataset_config_input, dataset_id_input],
|
297 |
outputs=[dataset_split_input])
|
298 |
|
299 |
with gr.Row(visible=True) as loading_row:
|
300 |
gr.Markdown('''
|
301 |
+
<p style="text-align: center;">
|
302 |
+
🚀🐢Please validate your model and dataset first...
|
303 |
+
</p>
|
304 |
''')
|
305 |
+
|
306 |
with gr.Row(visible=False) as preview_row:
|
307 |
gr.Markdown('''
|
308 |
<h1 style="text-align: center;">
|
309 |
+
Confirm Pre-processing Details
|
310 |
</h1>
|
311 |
+
Base on your model and dataset, we inferred this label mapping and feature mapping. <b>If the mapping is incorrect, please modify it in the table below.</b>
|
312 |
''')
|
313 |
|
314 |
with gr.Row():
|
315 |
id2label_mapping_dataframe = gr.DataFrame(label="Preview of label mapping", interactive=True, visible=False)
|
316 |
+
feature_mapping_dataframe = gr.DataFrame(label="Preview of feature mapping", interactive=True, visible=False)
|
317 |
with gr.Row():
|
318 |
example_input = gr.Markdown('Sample Input: ', visible=False)
|
319 |
|
|
|
327 |
size="lg",
|
328 |
)
|
329 |
|
330 |
+
model_id_input.blur(gate_validate_btn,
|
331 |
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
332 |
+
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
|
333 |
+
dataset_id_input.blur(gate_validate_btn,
|
334 |
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
335 |
+
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
|
336 |
+
dataset_config_input.input(gate_validate_btn,
|
337 |
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
338 |
+
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
|
339 |
+
dataset_split_input.input(gate_validate_btn,
|
340 |
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input],
|
341 |
+
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
|
342 |
id2label_mapping_dataframe.input(gate_validate_btn,
|
343 |
+
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input, id2label_mapping_dataframe, feature_mapping_dataframe],
|
344 |
+
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
|
345 |
+
feature_mapping_dataframe.input(gate_validate_btn,
|
346 |
+
inputs=[model_id_input, dataset_id_input, dataset_config_input, dataset_split_input, id2label_mapping_dataframe, feature_mapping_dataframe],
|
347 |
+
outputs=[run_btn, loading_row, preview_row, example_input, example_labels, id2label_mapping_dataframe, feature_mapping_dataframe])
|
348 |
+
scanners.change(write_scanners, inputs=scanners)
|
349 |
+
run_inference.change(
|
350 |
+
write_inference_type,
|
351 |
+
inputs=[run_inference]
|
352 |
+
)
|
353 |
+
|
354 |
run_btn.click(
|
355 |
try_submit,
|
356 |
inputs=[
|
|
|
359 |
dataset_config_input,
|
360 |
dataset_split_input,
|
361 |
id2label_mapping_dataframe,
|
362 |
+
feature_mapping_dataframe,
|
363 |
run_local,
|
364 |
],
|
365 |
outputs=[
|
config.yaml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
detectors:
|
2 |
+
- ethical_bias
|
3 |
+
- text_perturbation
|
4 |
+
- robustness
|
5 |
+
- performance
|
6 |
+
- underconfidence
|
7 |
+
- overconfidence
|
8 |
+
- spurious_correlation
|
9 |
+
inference_type: hf_pipeline
|
text_classification.py
CHANGED
@@ -19,9 +19,8 @@ def text_classification_map_model_and_dataset_labels(id2label, dataset_features)
|
|
19 |
continue
|
20 |
if len(feature.names) != len(id2label_mapping.keys()):
|
21 |
continue
|
22 |
-
|
23 |
dataset_labels = feature.names
|
24 |
-
|
25 |
# Try to match labels
|
26 |
for label in feature.names:
|
27 |
if label in id2label_mapping.keys():
|
@@ -31,10 +30,23 @@ def text_classification_map_model_and_dataset_labels(id2label, dataset_features)
|
|
31 |
model_label, label = text_classificaiton_match_label_case_unsensative(id2label_mapping, label)
|
32 |
if model_label is not None:
|
33 |
id2label_mapping[model_label] = label
|
|
|
|
|
34 |
|
35 |
return id2label_mapping, dataset_labels
|
36 |
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
def check_column_mapping_keys_validity(column_mapping, ppl):
|
39 |
# get the element in all the list elements
|
40 |
column_mapping = json.loads(column_mapping)
|
@@ -48,19 +60,10 @@ def check_column_mapping_keys_validity(column_mapping, ppl):
|
|
48 |
|
49 |
return user_labels == model_labels == original_labels
|
50 |
|
51 |
-
|
52 |
-
def text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, split):
|
53 |
-
# We assume dataset is ok here
|
54 |
-
ds = datasets.load_dataset(d_id, config)[split]
|
55 |
-
|
56 |
-
try:
|
57 |
-
dataset_features = ds.features
|
58 |
-
except AttributeError:
|
59 |
-
# Dataset does not have features, need to provide everything
|
60 |
-
return None, None, None
|
61 |
-
|
62 |
# Check whether we need to infer the text input column
|
63 |
infer_text_input_column = True
|
|
|
64 |
if "text" in column_mapping.keys():
|
65 |
dataset_text_column = column_mapping["text"]
|
66 |
if dataset_text_column in dataset_features.keys():
|
@@ -71,12 +74,26 @@ def text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, sp
|
|
71 |
if infer_text_input_column:
|
72 |
# Try to retrieve one
|
73 |
candidates = [f for f in dataset_features if dataset_features[f].dtype == "string"]
|
|
|
|
|
|
|
|
|
74 |
if len(candidates) > 0:
|
75 |
logging.debug(f"Candidates are {candidates}")
|
76 |
column_mapping["text"] = candidates[0]
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
# Load dataset as DataFrame
|
82 |
df = ds.to_pandas()
|
@@ -85,24 +102,13 @@ def text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, sp
|
|
85 |
id2label_mapping = {}
|
86 |
id2label = ppl.model.config.id2label
|
87 |
label2id = {v: k for k, v in id2label.items()}
|
88 |
-
prediction_input = None
|
89 |
-
prediction_result = None
|
90 |
-
try:
|
91 |
-
# Use the first item to test prediction
|
92 |
-
prediction_input = df.head(1).at[0, column_mapping["text"]]
|
93 |
-
results = ppl({"text": prediction_input}, top_k=None)
|
94 |
-
prediction_result = {
|
95 |
-
f'{result["label"]}({label2id[result["label"]]})': result["score"] for result in results
|
96 |
-
}
|
97 |
-
except Exception:
|
98 |
-
# Pipeline prediction failed, need to provide labels
|
99 |
-
return column_mapping, None, None
|
100 |
|
101 |
# Infer labels
|
102 |
id2label_mapping, dataset_labels = text_classification_map_model_and_dataset_labels(id2label, dataset_features)
|
103 |
id2label_mapping_dataset_model = {
|
104 |
v: k for k, v in id2label_mapping.items()
|
105 |
}
|
|
|
106 |
if "data" in column_mapping.keys():
|
107 |
if isinstance(column_mapping["data"], list):
|
108 |
# Use the column mapping passed by user
|
@@ -112,15 +118,31 @@ def text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, sp
|
|
112 |
column_mapping["label"] = {
|
113 |
i: None for i in id2label.keys()
|
114 |
}
|
115 |
-
return column_mapping,
|
116 |
|
117 |
-
prediction_result = {
|
118 |
-
f'[{label2id[result["label"]]}]{result["label"]}(original) - {id2label_mapping[result["label"]]}(mapped)': result["score"] for result in results
|
119 |
-
}
|
120 |
id2label_df = pd.DataFrame({
|
121 |
"Dataset Labels": dataset_labels,
|
122 |
"Model Prediction Labels": [id2label_mapping_dataset_model[label] for label in dataset_labels],
|
123 |
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
if "data" not in column_mapping.keys():
|
126 |
# Column mapping should contain original model labels
|
@@ -128,4 +150,4 @@ def text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, sp
|
|
128 |
str(i): id2label_mapping_dataset_model[label] for i, label in zip(id2label.keys(), dataset_labels)
|
129 |
}
|
130 |
|
131 |
-
return column_mapping, prediction_input, prediction_result, id2label_df
|
|
|
19 |
continue
|
20 |
if len(feature.names) != len(id2label_mapping.keys()):
|
21 |
continue
|
22 |
+
|
23 |
dataset_labels = feature.names
|
|
|
24 |
# Try to match labels
|
25 |
for label in feature.names:
|
26 |
if label in id2label_mapping.keys():
|
|
|
30 |
model_label, label = text_classificaiton_match_label_case_unsensative(id2label_mapping, label)
|
31 |
if model_label is not None:
|
32 |
id2label_mapping[model_label] = label
|
33 |
+
else:
|
34 |
+
print(f"Label {label} is not found in model labels")
|
35 |
|
36 |
return id2label_mapping, dataset_labels
|
37 |
|
38 |
+
'''
|
39 |
+
params:
|
40 |
+
column_mapping: dict
|
41 |
+
example: {
|
42 |
+
"text": "sentences",
|
43 |
+
"label": {
|
44 |
+
"label0": "LABEL_0",
|
45 |
+
"label1": "LABEL_1"
|
46 |
+
}
|
47 |
+
}
|
48 |
+
ppl: pipeline
|
49 |
+
'''
|
50 |
def check_column_mapping_keys_validity(column_mapping, ppl):
|
51 |
# get the element in all the list elements
|
52 |
column_mapping = json.loads(column_mapping)
|
|
|
60 |
|
61 |
return user_labels == model_labels == original_labels
|
62 |
|
63 |
+
def infer_text_input_column(column_mapping, dataset_features):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
# Check whether we need to infer the text input column
|
65 |
infer_text_input_column = True
|
66 |
+
feature_map_df = None
|
67 |
if "text" in column_mapping.keys():
|
68 |
dataset_text_column = column_mapping["text"]
|
69 |
if dataset_text_column in dataset_features.keys():
|
|
|
74 |
if infer_text_input_column:
|
75 |
# Try to retrieve one
|
76 |
candidates = [f for f in dataset_features if dataset_features[f].dtype == "string"]
|
77 |
+
feature_map_df = pd.DataFrame({
|
78 |
+
"Dataset Features": [candidates[0]],
|
79 |
+
"Model Input Features": ["text"]
|
80 |
+
})
|
81 |
if len(candidates) > 0:
|
82 |
logging.debug(f"Candidates are {candidates}")
|
83 |
column_mapping["text"] = candidates[0]
|
84 |
+
|
85 |
+
return column_mapping, feature_map_df
|
86 |
+
|
87 |
+
def text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, split):
|
88 |
+
# We assume dataset is ok here
|
89 |
+
ds = datasets.load_dataset(d_id, config)[split]
|
90 |
+
try:
|
91 |
+
dataset_features = ds.features
|
92 |
+
except AttributeError:
|
93 |
+
# Dataset does not have features, need to provide everything
|
94 |
+
return None, None, None, None, None
|
95 |
+
|
96 |
+
column_mapping, feature_map_df = infer_text_input_column(column_mapping, dataset_features)
|
97 |
|
98 |
# Load dataset as DataFrame
|
99 |
df = ds.to_pandas()
|
|
|
102 |
id2label_mapping = {}
|
103 |
id2label = ppl.model.config.id2label
|
104 |
label2id = {v: k for k, v in id2label.items()}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
# Infer labels
|
107 |
id2label_mapping, dataset_labels = text_classification_map_model_and_dataset_labels(id2label, dataset_features)
|
108 |
id2label_mapping_dataset_model = {
|
109 |
v: k for k, v in id2label_mapping.items()
|
110 |
}
|
111 |
+
|
112 |
if "data" in column_mapping.keys():
|
113 |
if isinstance(column_mapping["data"], list):
|
114 |
# Use the column mapping passed by user
|
|
|
118 |
column_mapping["label"] = {
|
119 |
i: None for i in id2label.keys()
|
120 |
}
|
121 |
+
return column_mapping, None, None, None, feature_map_df
|
122 |
|
|
|
|
|
|
|
123 |
id2label_df = pd.DataFrame({
|
124 |
"Dataset Labels": dataset_labels,
|
125 |
"Model Prediction Labels": [id2label_mapping_dataset_model[label] for label in dataset_labels],
|
126 |
})
|
127 |
+
|
128 |
+
# get a sample prediction from the model on the dataset
|
129 |
+
prediction_input = None
|
130 |
+
prediction_result = None
|
131 |
+
try:
|
132 |
+
# Use the first item to test prediction
|
133 |
+
prediction_input = df.head(1).at[0, column_mapping["text"]]
|
134 |
+
results = ppl({"text": prediction_input}, top_k=None)
|
135 |
+
prediction_result = {
|
136 |
+
f'{result["label"]}({label2id[result["label"]]})': result["score"] for result in results
|
137 |
+
}
|
138 |
+
except Exception as e:
|
139 |
+
# Pipeline prediction failed, need to provide labels
|
140 |
+
print(e, '>>>> error')
|
141 |
+
return column_mapping, prediction_input, None, id2label_df, feature_map_df
|
142 |
+
|
143 |
+
prediction_result = {
|
144 |
+
f'[{label2id[result["label"]]}]{result["label"]}(original) - {id2label_mapping[result["label"]]}(mapped)': result["score"] for result in results
|
145 |
+
}
|
146 |
|
147 |
if "data" not in column_mapping.keys():
|
148 |
# Column mapping should contain original model labels
|
|
|
150 |
str(i): id2label_mapping_dataset_model[label] for i, label in zip(id2label.keys(), dataset_labels)
|
151 |
}
|
152 |
|
153 |
+
return column_mapping, prediction_input, prediction_result, id2label_df, feature_map_df
|
utils.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import yaml
|
2 |
+
|
3 |
+
YAML_PATH = "./config.yaml"
|
4 |
+
|
5 |
+
class Dumper(yaml.Dumper):
|
6 |
+
def increase_indent(self, flow=False, *args, **kwargs):
|
7 |
+
return super().increase_indent(flow=flow, indentless=False)
|
8 |
+
|
9 |
+
# read scanners from yaml file
|
10 |
+
# return a list of scanners
|
11 |
+
def read_scanners(path):
|
12 |
+
scanners = []
|
13 |
+
with open(path, "r") as f:
|
14 |
+
config = yaml.load(f, Loader=yaml.FullLoader)
|
15 |
+
scanners = config.get("detectors", None)
|
16 |
+
return scanners
|
17 |
+
|
18 |
+
# convert a list of scanners to yaml file
|
19 |
+
def write_scanners(scanners):
|
20 |
+
with open(YAML_PATH, "r") as f:
|
21 |
+
config = yaml.load(f, Loader=yaml.FullLoader)
|
22 |
+
|
23 |
+
config["detectors"] = scanners
|
24 |
+
with open(YAML_PATH, "w") as f:
|
25 |
+
# save scanners to detectors in yaml
|
26 |
+
yaml.dump(config, f, Dumper=Dumper)
|
27 |
+
|
28 |
+
# read model_type from yaml file
|
29 |
+
def read_inference_type(path):
|
30 |
+
inference_type = ""
|
31 |
+
with open(path, "r") as f:
|
32 |
+
config = yaml.load(f, Loader=yaml.FullLoader)
|
33 |
+
inference_type = config.get("inference_type", None)
|
34 |
+
return inference_type
|
35 |
+
|
36 |
+
# write model_type to yaml file
|
37 |
+
def write_inference_type(use_inference):
|
38 |
+
with open(YAML_PATH, "r") as f:
|
39 |
+
config = yaml.load(f, Loader=yaml.FullLoader)
|
40 |
+
if use_inference:
|
41 |
+
config["inference_type"] = 'hf_inference_api'
|
42 |
+
else:
|
43 |
+
config["inference_type"] = 'hf_pipeline'
|
44 |
+
with open(YAML_PATH, "w") as f:
|
45 |
+
# save inference_type to inference_type in yaml
|
46 |
+
yaml.dump(config, f, Dumper=Dumper)
|
47 |
+
|
48 |
+
# convert column mapping dataframe to json
|
49 |
+
def convert_column_mapping_to_json(df, label=""):
|
50 |
+
column_mapping = {}
|
51 |
+
column_mapping[label] = []
|
52 |
+
for _, row in df.iterrows():
|
53 |
+
column_mapping[label].append(row.tolist())
|
54 |
+
return column_mapping
|