Spaces:
Running
Running
Fix feature mapping selection bug
#21
by
ZeroCommand
- opened
- app.py +2 -6
- app_text_classification.py +33 -4
- io_utils.py +23 -8
- run_jobs.py +4 -4
- text_classification_ui_helpers.py +38 -12
- wordings.py +10 -0
app.py
CHANGED
@@ -1,14 +1,10 @@
|
|
1 |
import atexit
|
2 |
-
import threading
|
3 |
-
|
4 |
import gradio as gr
|
5 |
|
6 |
from app_leaderboard import get_demo as get_demo_leaderboard
|
7 |
from app_text_classification import get_demo as get_demo_text_classification
|
8 |
from run_jobs import start_process_run_job, stop_thread
|
9 |
|
10 |
-
if threading.current_thread() is not threading.main_thread():
|
11 |
-
t = threading.current_thread()
|
12 |
try:
|
13 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="green")) as demo:
|
14 |
with gr.Tab("Text Classification"):
|
@@ -22,6 +18,6 @@ try:
|
|
22 |
demo.launch(share=False)
|
23 |
atexit.register(stop_thread)
|
24 |
|
25 |
-
except Exception:
|
26 |
-
print("stop background thread")
|
27 |
stop_thread()
|
|
|
1 |
import atexit
|
|
|
|
|
2 |
import gradio as gr
|
3 |
|
4 |
from app_leaderboard import get_demo as get_demo_leaderboard
|
5 |
from app_text_classification import get_demo as get_demo_text_classification
|
6 |
from run_jobs import start_process_run_job, stop_thread
|
7 |
|
|
|
|
|
8 |
try:
|
9 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="green")) as demo:
|
10 |
with gr.Tab("Text Classification"):
|
|
|
18 |
demo.launch(share=False)
|
19 |
atexit.register(stop_thread)
|
20 |
|
21 |
+
except Exception as e:
|
22 |
+
print("stop background thread: ", e)
|
23 |
stop_thread()
|
app_text_classification.py
CHANGED
@@ -4,8 +4,8 @@ from io_utils import (
|
|
4 |
read_scanners,
|
5 |
write_scanners,
|
6 |
read_inference_type,
|
7 |
-
write_inference_type,
|
8 |
get_logs_file,
|
|
|
9 |
)
|
10 |
from wordings import INTRODUCTION_MD, CONFIRM_MAPPING_DETAILS_MD
|
11 |
from text_classification_ui_helpers import (
|
@@ -14,6 +14,8 @@ from text_classification_ui_helpers import (
|
|
14 |
check_dataset_and_get_split,
|
15 |
check_model_and_show_prediction,
|
16 |
write_column_mapping_to_config,
|
|
|
|
|
17 |
)
|
18 |
|
19 |
MAX_LABELS = 20
|
@@ -70,6 +72,7 @@ def get_demo(demo):
|
|
70 |
run_local = gr.Checkbox(value=True, label="Run in this Space")
|
71 |
use_inference = read_inference_type(uid) == "hf_inference_api"
|
72 |
run_inference = gr.Checkbox(value=use_inference, label="Run with Inference API")
|
|
|
73 |
|
74 |
with gr.Accordion(label="Scanner Advance Config (optional)", open=False):
|
75 |
selected = read_scanners(uid)
|
@@ -94,7 +97,8 @@ def get_demo(demo):
|
|
94 |
demo.load(get_logs_file, uid_label, logs, every=0.5)
|
95 |
|
96 |
dataset_id_input.change(
|
97 |
-
check_dataset_and_get_config,
|
|
|
98 |
)
|
99 |
|
100 |
dataset_config_input.change(
|
@@ -105,8 +109,20 @@ def get_demo(demo):
|
|
105 |
|
106 |
scanners.change(write_scanners, inputs=[scanners, uid_label])
|
107 |
|
108 |
-
run_inference.change(
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
gr.on(
|
111 |
triggers=[label.change for label in column_mappings],
|
112 |
fn=write_column_mapping_to_config,
|
@@ -119,6 +135,19 @@ def get_demo(demo):
|
|
119 |
],
|
120 |
)
|
121 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
gr.on(
|
123 |
triggers=[
|
124 |
model_id_input.change,
|
|
|
4 |
read_scanners,
|
5 |
write_scanners,
|
6 |
read_inference_type,
|
|
|
7 |
get_logs_file,
|
8 |
+
write_inference_type,
|
9 |
)
|
10 |
from wordings import INTRODUCTION_MD, CONFIRM_MAPPING_DETAILS_MD
|
11 |
from text_classification_ui_helpers import (
|
|
|
14 |
check_dataset_and_get_split,
|
15 |
check_model_and_show_prediction,
|
16 |
write_column_mapping_to_config,
|
17 |
+
select_run_mode,
|
18 |
+
deselect_run_inference,
|
19 |
)
|
20 |
|
21 |
MAX_LABELS = 20
|
|
|
72 |
run_local = gr.Checkbox(value=True, label="Run in this Space")
|
73 |
use_inference = read_inference_type(uid) == "hf_inference_api"
|
74 |
run_inference = gr.Checkbox(value=use_inference, label="Run with Inference API")
|
75 |
+
inference_token = gr.Textbox(value="", label="HF Token for Inference API", visible=False, interactive=True)
|
76 |
|
77 |
with gr.Accordion(label="Scanner Advance Config (optional)", open=False):
|
78 |
selected = read_scanners(uid)
|
|
|
97 |
demo.load(get_logs_file, uid_label, logs, every=0.5)
|
98 |
|
99 |
dataset_id_input.change(
|
100 |
+
check_dataset_and_get_config,
|
101 |
+
inputs=[dataset_id_input, uid_label], outputs=[dataset_config_input]
|
102 |
)
|
103 |
|
104 |
dataset_config_input.change(
|
|
|
109 |
|
110 |
scanners.change(write_scanners, inputs=[scanners, uid_label])
|
111 |
|
112 |
+
run_inference.change(
|
113 |
+
select_run_mode,
|
114 |
+
inputs=[run_inference, inference_token, uid_label],
|
115 |
+
outputs=[inference_token, run_local])
|
116 |
+
|
117 |
+
run_local.change(
|
118 |
+
deselect_run_inference,
|
119 |
+
inputs=[run_local],
|
120 |
+
outputs=[inference_token, run_inference])
|
121 |
+
|
122 |
+
inference_token.change(
|
123 |
+
write_inference_type,
|
124 |
+
inputs=[run_inference, inference_token, uid_label])
|
125 |
+
|
126 |
gr.on(
|
127 |
triggers=[label.change for label in column_mappings],
|
128 |
fn=write_column_mapping_to_config,
|
|
|
135 |
],
|
136 |
)
|
137 |
|
138 |
+
# label.change sometimes does not pass the changed value
|
139 |
+
gr.on(
|
140 |
+
triggers=[label.input for label in column_mappings],
|
141 |
+
fn=write_column_mapping_to_config,
|
142 |
+
inputs=[
|
143 |
+
dataset_id_input,
|
144 |
+
dataset_config_input,
|
145 |
+
dataset_split_input,
|
146 |
+
uid_label,
|
147 |
+
*column_mappings,
|
148 |
+
],
|
149 |
+
)
|
150 |
+
|
151 |
gr.on(
|
152 |
triggers=[
|
153 |
model_id_input.change,
|
io_utils.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import os
|
2 |
import subprocess
|
3 |
-
|
4 |
import yaml
|
5 |
|
6 |
import pipe
|
@@ -28,17 +28,21 @@ def read_scanners(uid):
|
|
28 |
with open(get_yaml_path(uid), "r") as f:
|
29 |
config = yaml.load(f, Loader=yaml.FullLoader)
|
30 |
scanners = config.get("detectors", [])
|
|
|
31 |
return scanners
|
32 |
|
33 |
|
34 |
# convert a list of scanners to yaml file
|
35 |
def write_scanners(scanners, uid):
|
36 |
-
with open(get_yaml_path(uid), "r
|
37 |
config = yaml.load(f, Loader=yaml.FullLoader)
|
38 |
if config:
|
39 |
config["detectors"] = scanners
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
42 |
|
43 |
|
44 |
# read model_type from yaml file
|
@@ -47,19 +51,25 @@ def read_inference_type(uid):
|
|
47 |
with open(get_yaml_path(uid), "r") as f:
|
48 |
config = yaml.load(f, Loader=yaml.FullLoader)
|
49 |
inference_type = config.get("inference_type", "")
|
|
|
50 |
return inference_type
|
51 |
|
52 |
|
53 |
# write model_type to yaml file
|
54 |
-
def write_inference_type(use_inference, uid):
|
55 |
-
with open(get_yaml_path(uid), "r
|
56 |
config = yaml.load(f, Loader=yaml.FullLoader)
|
57 |
if use_inference:
|
58 |
config["inference_type"] = "hf_inference_api"
|
|
|
59 |
else:
|
60 |
config["inference_type"] = "hf_pipeline"
|
61 |
-
|
|
|
|
|
62 |
yaml.dump(config, f, Dumper=Dumper)
|
|
|
|
|
63 |
|
64 |
|
65 |
# read column mapping from yaml file
|
@@ -69,6 +79,7 @@ def read_column_mapping(uid):
|
|
69 |
config = yaml.load(f, Loader=yaml.FullLoader)
|
70 |
if config:
|
71 |
column_mapping = config.get("column_mapping", dict())
|
|
|
72 |
return column_mapping
|
73 |
|
74 |
|
@@ -76,15 +87,18 @@ def read_column_mapping(uid):
|
|
76 |
def write_column_mapping(mapping, uid):
|
77 |
with open(get_yaml_path(uid), "r") as f:
|
78 |
config = yaml.load(f, Loader=yaml.FullLoader)
|
|
|
|
|
79 |
if config is None:
|
80 |
return
|
81 |
if mapping is None and "column_mapping" in config.keys():
|
82 |
del config["column_mapping"]
|
83 |
else:
|
84 |
config["column_mapping"] = mapping
|
|
|
85 |
with open(get_yaml_path(uid), "w") as f:
|
86 |
-
# save column_mapping to column_mapping in yaml
|
87 |
yaml.dump(config, f, Dumper=Dumper)
|
|
|
88 |
|
89 |
|
90 |
# convert column mapping dataframe to json
|
@@ -107,6 +121,7 @@ def get_logs_file(uid):
|
|
107 |
def write_log_to_user_file(id, log):
|
108 |
with open(f"./tmp/{id}_log", "a") as f:
|
109 |
f.write(log)
|
|
|
110 |
|
111 |
|
112 |
def save_job_to_pipe(id, job, lock):
|
|
|
1 |
import os
|
2 |
import subprocess
|
3 |
+
import gradio as gr
|
4 |
import yaml
|
5 |
|
6 |
import pipe
|
|
|
28 |
with open(get_yaml_path(uid), "r") as f:
|
29 |
config = yaml.load(f, Loader=yaml.FullLoader)
|
30 |
scanners = config.get("detectors", [])
|
31 |
+
f.close()
|
32 |
return scanners
|
33 |
|
34 |
|
35 |
# convert a list of scanners to yaml file
|
36 |
def write_scanners(scanners, uid):
|
37 |
+
with open(get_yaml_path(uid), "r") as f:
|
38 |
config = yaml.load(f, Loader=yaml.FullLoader)
|
39 |
if config:
|
40 |
config["detectors"] = scanners
|
41 |
+
f.close()
|
42 |
+
# save scanners to detectors in yaml
|
43 |
+
with open(get_yaml_path(uid), "w") as f:
|
44 |
+
yaml.dump(config, f, Dumper=Dumper)
|
45 |
+
f.close()
|
46 |
|
47 |
|
48 |
# read model_type from yaml file
|
|
|
51 |
with open(get_yaml_path(uid), "r") as f:
|
52 |
config = yaml.load(f, Loader=yaml.FullLoader)
|
53 |
inference_type = config.get("inference_type", "")
|
54 |
+
f.close()
|
55 |
return inference_type
|
56 |
|
57 |
|
58 |
# write model_type to yaml file
|
59 |
+
def write_inference_type(use_inference, inference_token, uid):
|
60 |
+
with open(get_yaml_path(uid), "r") as f:
|
61 |
config = yaml.load(f, Loader=yaml.FullLoader)
|
62 |
if use_inference:
|
63 |
config["inference_type"] = "hf_inference_api"
|
64 |
+
config["inference_token"] = inference_token
|
65 |
else:
|
66 |
config["inference_type"] = "hf_pipeline"
|
67 |
+
f.close()
|
68 |
+
# save inference_type to inference_type in yaml
|
69 |
+
with open(get_yaml_path(uid), "w") as f:
|
70 |
yaml.dump(config, f, Dumper=Dumper)
|
71 |
+
f.close()
|
72 |
+
|
73 |
|
74 |
|
75 |
# read column mapping from yaml file
|
|
|
79 |
config = yaml.load(f, Loader=yaml.FullLoader)
|
80 |
if config:
|
81 |
column_mapping = config.get("column_mapping", dict())
|
82 |
+
f.close()
|
83 |
return column_mapping
|
84 |
|
85 |
|
|
|
87 |
def write_column_mapping(mapping, uid):
|
88 |
with open(get_yaml_path(uid), "r") as f:
|
89 |
config = yaml.load(f, Loader=yaml.FullLoader)
|
90 |
+
f.close()
|
91 |
+
|
92 |
if config is None:
|
93 |
return
|
94 |
if mapping is None and "column_mapping" in config.keys():
|
95 |
del config["column_mapping"]
|
96 |
else:
|
97 |
config["column_mapping"] = mapping
|
98 |
+
|
99 |
with open(get_yaml_path(uid), "w") as f:
|
|
|
100 |
yaml.dump(config, f, Dumper=Dumper)
|
101 |
+
f.close()
|
102 |
|
103 |
|
104 |
# convert column mapping dataframe to json
|
|
|
121 |
def write_log_to_user_file(id, log):
|
122 |
with open(f"./tmp/{id}_log", "a") as f:
|
123 |
f.write(log)
|
124 |
+
f.close()
|
125 |
|
126 |
|
127 |
def save_job_to_pipe(id, job, lock):
|
run_jobs.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import threading
|
2 |
import time
|
3 |
-
|
4 |
import pipe
|
5 |
from io_utils import pop_job_from_pipe
|
6 |
|
@@ -9,7 +9,7 @@ is_running = False
|
|
9 |
|
10 |
def start_process_run_job():
|
11 |
try:
|
12 |
-
|
13 |
global thread, is_running
|
14 |
thread = threading.Thread(target=run_job)
|
15 |
thread.daemon = True
|
@@ -22,7 +22,7 @@ def start_process_run_job():
|
|
22 |
|
23 |
|
24 |
def stop_thread():
|
25 |
-
|
26 |
global is_running
|
27 |
is_running = False
|
28 |
|
@@ -34,6 +34,6 @@ def run_job():
|
|
34 |
pop_job_from_pipe()
|
35 |
time.sleep(10)
|
36 |
except KeyboardInterrupt:
|
37 |
-
|
38 |
is_running = False
|
39 |
break
|
|
|
1 |
import threading
|
2 |
import time
|
3 |
+
import logging
|
4 |
import pipe
|
5 |
from io_utils import pop_job_from_pipe
|
6 |
|
|
|
9 |
|
10 |
def start_process_run_job():
|
11 |
try:
|
12 |
+
logging.debug("Running jobs in thread")
|
13 |
global thread, is_running
|
14 |
thread = threading.Thread(target=run_job)
|
15 |
thread.daemon = True
|
|
|
22 |
|
23 |
|
24 |
def stop_thread():
|
25 |
+
logging.debug("Stop thread")
|
26 |
global is_running
|
27 |
is_running = False
|
28 |
|
|
|
34 |
pop_job_from_pipe()
|
35 |
time.sleep(10)
|
36 |
except KeyboardInterrupt:
|
37 |
+
logging.debug("KeyboardInterrupt stop background thread")
|
38 |
is_running = False
|
39 |
break
|
text_classification_ui_helpers.py
CHANGED
@@ -9,10 +9,11 @@ import gradio as gr
|
|
9 |
from transformers.pipelines import TextClassificationPipeline
|
10 |
|
11 |
from io_utils import (get_yaml_path, read_column_mapping, save_job_to_pipe,
|
12 |
-
write_column_mapping, write_log_to_user_file
|
|
|
13 |
from text_classification import (check_model, get_example_prediction,
|
14 |
get_labels_and_features_from_dataset)
|
15 |
-
from wordings import CONFIRM_MAPPING_DETAILS_FAIL_RAW
|
16 |
|
17 |
MAX_LABELS = 20
|
18 |
MAX_FEATURES = 20
|
@@ -24,7 +25,7 @@ HF_WRITE_TOKEN = "HF_WRITE_TOKEN"
|
|
24 |
|
25 |
def check_dataset_and_get_config(dataset_id, uid):
|
26 |
try:
|
27 |
-
write_column_mapping(None, uid) # reset column mapping
|
28 |
configs = datasets.get_dataset_config_names(dataset_id)
|
29 |
return gr.Dropdown(configs, value=configs[0], visible=True)
|
30 |
except Exception:
|
@@ -41,7 +42,30 @@ def check_dataset_and_get_split(dataset_id, dataset_config):
|
|
41 |
# gr.Warning(f"Failed to load dataset {dataset_id} with config {dataset_config}: {e}")
|
42 |
pass
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
def write_column_mapping_to_config(
|
46 |
dataset_id, dataset_config, dataset_split, uid, *labels
|
47 |
):
|
@@ -52,20 +76,17 @@ def write_column_mapping_to_config(
|
|
52 |
)
|
53 |
if labels is None:
|
54 |
return
|
55 |
-
labels = [*labels]
|
56 |
-
all_mappings = read_column_mapping(uid)
|
57 |
|
58 |
-
|
59 |
-
all_mappings = dict()
|
60 |
|
61 |
if "labels" not in all_mappings.keys():
|
62 |
all_mappings["labels"] = dict()
|
63 |
for i, label in enumerate(labels[:MAX_LABELS]):
|
64 |
if label:
|
65 |
-
all_mappings["labels"][label] = ds_labels[i]
|
66 |
if "features" not in all_mappings.keys():
|
67 |
all_mappings["features"] = dict()
|
68 |
-
for
|
69 |
if feat:
|
70 |
# TODO: Substitute 'text' with more features for zero-shot
|
71 |
all_mappings["features"]["text"] = feat
|
@@ -134,7 +155,7 @@ def check_model_and_show_prediction(
|
|
134 |
|
135 |
# when dataset does not have labels or features
|
136 |
if not isinstance(ds_labels, list) or not isinstance(ds_features, list):
|
137 |
-
|
138 |
return (
|
139 |
gr.update(visible=False),
|
140 |
gr.update(visible=False),
|
@@ -154,9 +175,8 @@ def check_model_and_show_prediction(
|
|
154 |
collections.Counter(model_id2label.values()) != collections.Counter(ds_labels)
|
155 |
or ds_features[0] != "text"
|
156 |
):
|
157 |
-
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
|
158 |
return (
|
159 |
-
gr.update(visible=
|
160 |
gr.update(visible=False),
|
161 |
gr.update(visible=True, open=True),
|
162 |
*column_mappings,
|
@@ -192,6 +212,10 @@ def try_submit(m_id, d_id, config, split, local, uid):
|
|
192 |
return (gr.update(interactive=True), gr.update(visible=False))
|
193 |
feature_mapping = all_mappings["features"]
|
194 |
|
|
|
|
|
|
|
|
|
195 |
# TODO: Set column mapping for some dataset such as `amazon_polarity`
|
196 |
if local:
|
197 |
command = [
|
@@ -220,6 +244,8 @@ def try_submit(m_id, d_id, config, split, local, uid):
|
|
220 |
json.dumps(label_mapping),
|
221 |
"--scan_config",
|
222 |
get_yaml_path(uid),
|
|
|
|
|
223 |
]
|
224 |
|
225 |
eval_str = f"[{m_id}]<{d_id}({config}, {split} set)>"
|
|
|
9 |
from transformers.pipelines import TextClassificationPipeline
|
10 |
|
11 |
from io_utils import (get_yaml_path, read_column_mapping, save_job_to_pipe,
|
12 |
+
write_column_mapping, write_log_to_user_file,
|
13 |
+
write_inference_type)
|
14 |
from text_classification import (check_model, get_example_prediction,
|
15 |
get_labels_and_features_from_dataset)
|
16 |
+
from wordings import CONFIRM_MAPPING_DETAILS_FAIL_RAW, MAPPING_STYLED_ERROR_WARNING, CHECK_CONFIG_OR_SPLIT_RAW
|
17 |
|
18 |
MAX_LABELS = 20
|
19 |
MAX_FEATURES = 20
|
|
|
25 |
|
26 |
def check_dataset_and_get_config(dataset_id, uid):
|
27 |
try:
|
28 |
+
# write_column_mapping(None, uid) # reset column mapping
|
29 |
configs = datasets.get_dataset_config_names(dataset_id)
|
30 |
return gr.Dropdown(configs, value=configs[0], visible=True)
|
31 |
except Exception:
|
|
|
42 |
# gr.Warning(f"Failed to load dataset {dataset_id} with config {dataset_config}: {e}")
|
43 |
pass
|
44 |
|
45 |
+
def select_run_mode(run_inf, inf_token, uid):
|
46 |
+
if run_inf:
|
47 |
+
if len(inf_token) > 0:
|
48 |
+
write_inference_type(run_inf, inf_token, uid)
|
49 |
+
return (
|
50 |
+
gr.update(visible=True),
|
51 |
+
gr.update(value=False))
|
52 |
+
else:
|
53 |
+
return (
|
54 |
+
gr.update(visible=False),
|
55 |
+
gr.update(value=True))
|
56 |
|
57 |
+
def deselect_run_inference(run_local):
|
58 |
+
if run_local:
|
59 |
+
return (
|
60 |
+
gr.update(visible=False),
|
61 |
+
gr.update(value=False)
|
62 |
+
)
|
63 |
+
else:
|
64 |
+
return (
|
65 |
+
gr.update(visible=True),
|
66 |
+
gr.update(value=True)
|
67 |
+
)
|
68 |
+
|
69 |
def write_column_mapping_to_config(
|
70 |
dataset_id, dataset_config, dataset_split, uid, *labels
|
71 |
):
|
|
|
76 |
)
|
77 |
if labels is None:
|
78 |
return
|
|
|
|
|
79 |
|
80 |
+
all_mappings = dict()
|
|
|
81 |
|
82 |
if "labels" not in all_mappings.keys():
|
83 |
all_mappings["labels"] = dict()
|
84 |
for i, label in enumerate(labels[:MAX_LABELS]):
|
85 |
if label:
|
86 |
+
all_mappings["labels"][label] = ds_labels[i%len(ds_labels)]
|
87 |
if "features" not in all_mappings.keys():
|
88 |
all_mappings["features"] = dict()
|
89 |
+
for _, feat in enumerate(labels[MAX_LABELS : (MAX_LABELS + MAX_FEATURES)]):
|
90 |
if feat:
|
91 |
# TODO: Substitute 'text' with more features for zero-shot
|
92 |
all_mappings["features"]["text"] = feat
|
|
|
155 |
|
156 |
# when dataset does not have labels or features
|
157 |
if not isinstance(ds_labels, list) or not isinstance(ds_features, list):
|
158 |
+
gr.Warning(CHECK_CONFIG_OR_SPLIT_RAW)
|
159 |
return (
|
160 |
gr.update(visible=False),
|
161 |
gr.update(visible=False),
|
|
|
175 |
collections.Counter(model_id2label.values()) != collections.Counter(ds_labels)
|
176 |
or ds_features[0] != "text"
|
177 |
):
|
|
|
178 |
return (
|
179 |
+
gr.update(value=MAPPING_STYLED_ERROR_WARNING, visible=True),
|
180 |
gr.update(visible=False),
|
181 |
gr.update(visible=True, open=True),
|
182 |
*column_mappings,
|
|
|
212 |
return (gr.update(interactive=True), gr.update(visible=False))
|
213 |
feature_mapping = all_mappings["features"]
|
214 |
|
215 |
+
leaderboard_dataset = None
|
216 |
+
if os.environ.get("SPACE_ID") == "giskardai/giskard-evaluator":
|
217 |
+
leaderboard_dataset = "ZeroCommand/test-giskard-report"
|
218 |
+
|
219 |
# TODO: Set column mapping for some dataset such as `amazon_polarity`
|
220 |
if local:
|
221 |
command = [
|
|
|
244 |
json.dumps(label_mapping),
|
245 |
"--scan_config",
|
246 |
get_yaml_path(uid),
|
247 |
+
"--leaderboard_dataset",
|
248 |
+
leaderboard_dataset,
|
249 |
]
|
250 |
|
251 |
eval_str = f"[{m_id}]<{d_id}({config}, {split} set)>"
|
wordings.py
CHANGED
@@ -21,9 +21,19 @@ CONFIRM_MAPPING_DETAILS_FAIL_RAW = """
|
|
21 |
Sorry, we cannot align the input/output of your dataset with the model. Pleaser double check your model and dataset.
|
22 |
"""
|
23 |
|
|
|
|
|
|
|
|
|
24 |
PREDICTION_SAMPLE_MD = """
|
25 |
<h1 style="text-align: center;">
|
26 |
Model Prediction Sample
|
27 |
</h1>
|
28 |
Here is a sample prediction from your model based on your dataset.
|
29 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
Sorry, we cannot align the input/output of your dataset with the model. Pleaser double check your model and dataset.
|
22 |
"""
|
23 |
|
24 |
+
CHECK_CONFIG_OR_SPLIT_RAW = """
|
25 |
+
Please check your dataset config or split.
|
26 |
+
"""
|
27 |
+
|
28 |
PREDICTION_SAMPLE_MD = """
|
29 |
<h1 style="text-align: center;">
|
30 |
Model Prediction Sample
|
31 |
</h1>
|
32 |
Here is a sample prediction from your model based on your dataset.
|
33 |
"""
|
34 |
+
|
35 |
+
MAPPING_STYLED_ERROR_WARNING = """
|
36 |
+
<h3 style="text-align: center;color: coral; background-color: #fff0f3; border-radius: 8px; padding: 10px; ">
|
37 |
+
Sorry, we cannot auto-align the labels/features of your dataset and model. Please double check.
|
38 |
+
</h3>
|
39 |
+
"""
|