Spaces:
Sleeping
Sleeping
GSK-2509 fix not standard label columns (go_emotions)
#29
by
ZeroCommand
- opened
- app.py +1 -1
- app_text_classification.py +43 -39
- io_utils.py +21 -26
- requirements.txt +1 -1
- text_classification.py +11 -2
- text_classification_ui_helpers.py +145 -94
app.py
CHANGED
@@ -10,7 +10,7 @@ from run_jobs import start_process_run_job, stop_thread
|
|
10 |
try:
|
11 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="green")) as demo:
|
12 |
with gr.Tab("Text Classification"):
|
13 |
-
get_demo_text_classification(
|
14 |
with gr.Tab("Leaderboard"):
|
15 |
get_demo_leaderboard()
|
16 |
with gr.Tab("Logs(Debug)"):
|
|
|
10 |
try:
|
11 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="green")) as demo:
|
12 |
with gr.Tab("Text Classification"):
|
13 |
+
get_demo_text_classification()
|
14 |
with gr.Tab("Leaderboard"):
|
15 |
get_demo_leaderboard()
|
16 |
with gr.Tab("Logs(Debug)"):
|
app_text_classification.py
CHANGED
@@ -2,17 +2,17 @@ import uuid
|
|
2 |
|
3 |
import gradio as gr
|
4 |
|
5 |
-
from io_utils import (get_logs_file,
|
6 |
-
write_inference_type, write_scanners)
|
7 |
from text_classification_ui_helpers import (check_dataset_and_get_config,
|
8 |
check_dataset_and_get_split,
|
9 |
-
|
10 |
deselect_run_inference,
|
11 |
select_run_mode, try_submit,
|
12 |
-
write_column_mapping_to_config
|
|
|
13 |
from wordings import CONFIRM_MAPPING_DETAILS_MD, INTRODUCTION_MD
|
14 |
|
15 |
-
MAX_LABELS =
|
16 |
MAX_FEATURES = 20
|
17 |
|
18 |
EXAMPLE_MODEL_ID = "cardiffnlp/twitter-roberta-base-sentiment-latest"
|
@@ -20,7 +20,7 @@ EXAMPLE_DATA_ID = "tweet_eval"
|
|
20 |
CONFIG_PATH = "./config.yaml"
|
21 |
|
22 |
|
23 |
-
def get_demo(
|
24 |
with gr.Row():
|
25 |
gr.Markdown(INTRODUCTION_MD)
|
26 |
uid_label = gr.Textbox(
|
@@ -41,6 +41,13 @@ def get_demo(demo):
|
|
41 |
dataset_config_input = gr.Dropdown(label="Dataset Config", visible=False)
|
42 |
dataset_split_input = gr.Dropdown(label="Dataset Split", visible=False)
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
with gr.Row():
|
45 |
example_input = gr.HTML(visible=False)
|
46 |
with gr.Row():
|
@@ -55,23 +62,17 @@ def get_demo(demo):
|
|
55 |
column_mappings = []
|
56 |
with gr.Row():
|
57 |
with gr.Column():
|
|
|
58 |
for _ in range(MAX_LABELS):
|
59 |
column_mappings.append(gr.Dropdown(visible=False))
|
60 |
with gr.Column():
|
|
|
61 |
for _ in range(MAX_LABELS, MAX_LABELS + MAX_FEATURES):
|
62 |
column_mappings.append(gr.Dropdown(visible=False))
|
63 |
|
64 |
with gr.Accordion(label="Model Wrap Advance Config (optional)", open=False):
|
65 |
run_local = gr.Checkbox(value=True, label="Run in this Space")
|
66 |
-
run_inference = gr.Checkbox(value=
|
67 |
-
|
68 |
-
@gr.on(triggers=[uid_label.change], inputs=[uid_label], outputs=[run_inference])
|
69 |
-
def get_run_mode(uid):
|
70 |
-
return gr.update(
|
71 |
-
value=read_inference_type(uid) == "hf_inference_api"
|
72 |
-
and not run_local.value
|
73 |
-
)
|
74 |
-
|
75 |
inference_token = gr.Textbox(
|
76 |
value="",
|
77 |
label="HF Token for Inference API",
|
@@ -97,13 +98,12 @@ def get_demo(demo):
|
|
97 |
run_btn = gr.Button(
|
98 |
"Get Evaluation Result",
|
99 |
variant="primary",
|
100 |
-
interactive=
|
101 |
size="lg",
|
102 |
)
|
103 |
|
104 |
with gr.Row():
|
105 |
-
logs = gr.Textbox(label="Giskard Bot Evaluation Log:", visible=False)
|
106 |
-
demo.load(get_logs_file, None, logs, every=0.5)
|
107 |
|
108 |
dataset_id_input.change(
|
109 |
check_dataset_and_get_config,
|
@@ -121,7 +121,7 @@ def get_demo(demo):
|
|
121 |
|
122 |
run_inference.change(
|
123 |
select_run_mode,
|
124 |
-
inputs=[run_inference
|
125 |
outputs=[inference_token, run_local],
|
126 |
)
|
127 |
|
@@ -131,17 +131,10 @@ def get_demo(demo):
|
|
131 |
outputs=[inference_token, run_inference],
|
132 |
)
|
133 |
|
134 |
-
inference_token.change(
|
135 |
-
write_inference_type, inputs=[run_inference, inference_token, uid_label]
|
136 |
-
)
|
137 |
-
|
138 |
gr.on(
|
139 |
triggers=[label.change for label in column_mappings],
|
140 |
fn=write_column_mapping_to_config,
|
141 |
inputs=[
|
142 |
-
dataset_id_input,
|
143 |
-
dataset_config_input,
|
144 |
-
dataset_split_input,
|
145 |
uid_label,
|
146 |
*column_mappings,
|
147 |
],
|
@@ -152,9 +145,6 @@ def get_demo(demo):
|
|
152 |
triggers=[label.input for label in column_mappings],
|
153 |
fn=write_column_mapping_to_config,
|
154 |
inputs=[
|
155 |
-
dataset_id_input,
|
156 |
-
dataset_config_input,
|
157 |
-
dataset_split_input,
|
158 |
uid_label,
|
159 |
*column_mappings,
|
160 |
],
|
@@ -165,19 +155,33 @@ def get_demo(demo):
|
|
165 |
model_id_input.change,
|
166 |
dataset_id_input.change,
|
167 |
dataset_config_input.change,
|
168 |
-
dataset_split_input.change,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
],
|
170 |
-
fn=
|
171 |
inputs=[
|
172 |
model_id_input,
|
173 |
dataset_id_input,
|
174 |
dataset_config_input,
|
175 |
dataset_split_input,
|
|
|
176 |
],
|
177 |
outputs=[
|
178 |
example_input,
|
179 |
example_prediction,
|
180 |
column_mapping_accordion,
|
|
|
181 |
*column_mappings,
|
182 |
],
|
183 |
)
|
@@ -193,6 +197,8 @@ def get_demo(demo):
|
|
193 |
dataset_config_input,
|
194 |
dataset_split_input,
|
195 |
run_local,
|
|
|
|
|
196 |
uid_label,
|
197 |
],
|
198 |
outputs=[run_btn, logs],
|
@@ -203,12 +209,10 @@ def get_demo(demo):
|
|
203 |
|
204 |
gr.on(
|
205 |
triggers=[
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
run_local.change,
|
211 |
-
scanners.change,
|
212 |
],
|
213 |
fn=enable_run_btn,
|
214 |
inputs=None,
|
@@ -216,8 +220,8 @@ def get_demo(demo):
|
|
216 |
)
|
217 |
|
218 |
gr.on(
|
219 |
-
triggers=[label.
|
220 |
fn=enable_run_btn,
|
221 |
-
inputs=
|
222 |
outputs=[run_btn],
|
223 |
)
|
|
|
2 |
|
3 |
import gradio as gr
|
4 |
|
5 |
+
from io_utils import (get_logs_file, read_scanners, write_scanners)
|
|
|
6 |
from text_classification_ui_helpers import (check_dataset_and_get_config,
|
7 |
check_dataset_and_get_split,
|
8 |
+
align_columns_and_show_prediction,
|
9 |
deselect_run_inference,
|
10 |
select_run_mode, try_submit,
|
11 |
+
write_column_mapping_to_config,
|
12 |
+
precheck_model_ds_enable_example_btn)
|
13 |
from wordings import CONFIRM_MAPPING_DETAILS_MD, INTRODUCTION_MD
|
14 |
|
15 |
+
MAX_LABELS = 40
|
16 |
MAX_FEATURES = 20
|
17 |
|
18 |
EXAMPLE_MODEL_ID = "cardiffnlp/twitter-roberta-base-sentiment-latest"
|
|
|
20 |
CONFIG_PATH = "./config.yaml"
|
21 |
|
22 |
|
23 |
+
def get_demo():
|
24 |
with gr.Row():
|
25 |
gr.Markdown(INTRODUCTION_MD)
|
26 |
uid_label = gr.Textbox(
|
|
|
41 |
dataset_config_input = gr.Dropdown(label="Dataset Config", visible=False)
|
42 |
dataset_split_input = gr.Dropdown(label="Dataset Split", visible=False)
|
43 |
|
44 |
+
with gr.Row():
|
45 |
+
example_btn = gr.Button(
|
46 |
+
"Auto-align Columns & Get Sample Prediction",
|
47 |
+
visible=True,
|
48 |
+
variant="primary",
|
49 |
+
interactive=False)
|
50 |
+
|
51 |
with gr.Row():
|
52 |
example_input = gr.HTML(visible=False)
|
53 |
with gr.Row():
|
|
|
62 |
column_mappings = []
|
63 |
with gr.Row():
|
64 |
with gr.Column():
|
65 |
+
gr.Markdown("# Label Mapping")
|
66 |
for _ in range(MAX_LABELS):
|
67 |
column_mappings.append(gr.Dropdown(visible=False))
|
68 |
with gr.Column():
|
69 |
+
gr.Markdown("# Feature Mapping")
|
70 |
for _ in range(MAX_LABELS, MAX_LABELS + MAX_FEATURES):
|
71 |
column_mappings.append(gr.Dropdown(visible=False))
|
72 |
|
73 |
with gr.Accordion(label="Model Wrap Advance Config (optional)", open=False):
|
74 |
run_local = gr.Checkbox(value=True, label="Run in this Space")
|
75 |
+
run_inference = gr.Checkbox(value=False, label="Run with Inference API")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
inference_token = gr.Textbox(
|
77 |
value="",
|
78 |
label="HF Token for Inference API",
|
|
|
98 |
run_btn = gr.Button(
|
99 |
"Get Evaluation Result",
|
100 |
variant="primary",
|
101 |
+
interactive=False,
|
102 |
size="lg",
|
103 |
)
|
104 |
|
105 |
with gr.Row():
|
106 |
+
logs = gr.Textbox(value=get_logs_file, label="Giskard Bot Evaluation Log:", visible=False, every=0.5)
|
|
|
107 |
|
108 |
dataset_id_input.change(
|
109 |
check_dataset_and_get_config,
|
|
|
121 |
|
122 |
run_inference.change(
|
123 |
select_run_mode,
|
124 |
+
inputs=[run_inference],
|
125 |
outputs=[inference_token, run_local],
|
126 |
)
|
127 |
|
|
|
131 |
outputs=[inference_token, run_inference],
|
132 |
)
|
133 |
|
|
|
|
|
|
|
|
|
134 |
gr.on(
|
135 |
triggers=[label.change for label in column_mappings],
|
136 |
fn=write_column_mapping_to_config,
|
137 |
inputs=[
|
|
|
|
|
|
|
138 |
uid_label,
|
139 |
*column_mappings,
|
140 |
],
|
|
|
145 |
triggers=[label.input for label in column_mappings],
|
146 |
fn=write_column_mapping_to_config,
|
147 |
inputs=[
|
|
|
|
|
|
|
148 |
uid_label,
|
149 |
*column_mappings,
|
150 |
],
|
|
|
155 |
model_id_input.change,
|
156 |
dataset_id_input.change,
|
157 |
dataset_config_input.change,
|
158 |
+
dataset_split_input.change],
|
159 |
+
fn=precheck_model_ds_enable_example_btn,
|
160 |
+
inputs=[
|
161 |
+
model_id_input,
|
162 |
+
dataset_id_input,
|
163 |
+
dataset_config_input,
|
164 |
+
dataset_split_input,
|
165 |
+
],
|
166 |
+
outputs=[example_btn])
|
167 |
+
|
168 |
+
gr.on(
|
169 |
+
triggers=[
|
170 |
+
example_btn.click,
|
171 |
],
|
172 |
+
fn=align_columns_and_show_prediction,
|
173 |
inputs=[
|
174 |
model_id_input,
|
175 |
dataset_id_input,
|
176 |
dataset_config_input,
|
177 |
dataset_split_input,
|
178 |
+
uid_label,
|
179 |
],
|
180 |
outputs=[
|
181 |
example_input,
|
182 |
example_prediction,
|
183 |
column_mapping_accordion,
|
184 |
+
run_btn,
|
185 |
*column_mappings,
|
186 |
],
|
187 |
)
|
|
|
197 |
dataset_config_input,
|
198 |
dataset_split_input,
|
199 |
run_local,
|
200 |
+
run_inference,
|
201 |
+
inference_token,
|
202 |
uid_label,
|
203 |
],
|
204 |
outputs=[run_btn, logs],
|
|
|
209 |
|
210 |
gr.on(
|
211 |
triggers=[
|
212 |
+
run_inference.input,
|
213 |
+
run_local.input,
|
214 |
+
inference_token.input,
|
215 |
+
scanners.input,
|
|
|
|
|
216 |
],
|
217 |
fn=enable_run_btn,
|
218 |
inputs=None,
|
|
|
220 |
)
|
221 |
|
222 |
gr.on(
|
223 |
+
triggers=[label.input for label in column_mappings],
|
224 |
fn=enable_run_btn,
|
225 |
+
inputs=column_mappings,
|
226 |
outputs=[run_btn],
|
227 |
)
|
io_utils.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import os
|
|
|
2 |
import subprocess
|
3 |
|
4 |
import yaml
|
@@ -6,6 +7,7 @@ import yaml
|
|
6 |
import pipe
|
7 |
|
8 |
YAML_PATH = "./cicd/configs"
|
|
|
9 |
|
10 |
|
11 |
class Dumper(yaml.Dumper):
|
@@ -28,7 +30,6 @@ def read_scanners(uid):
|
|
28 |
with open(get_yaml_path(uid), "r") as f:
|
29 |
config = yaml.load(f, Loader=yaml.FullLoader)
|
30 |
scanners = config.get("detectors", [])
|
31 |
-
f.close()
|
32 |
return scanners
|
33 |
|
34 |
|
@@ -38,11 +39,9 @@ def write_scanners(scanners, uid):
|
|
38 |
config = yaml.load(f, Loader=yaml.FullLoader)
|
39 |
if config:
|
40 |
config["detectors"] = scanners
|
41 |
-
f.close()
|
42 |
# save scanners to detectors in yaml
|
43 |
with open(get_yaml_path(uid), "w") as f:
|
44 |
yaml.dump(config, f, Dumper=Dumper)
|
45 |
-
f.close()
|
46 |
|
47 |
|
48 |
# read model_type from yaml file
|
@@ -51,7 +50,6 @@ def read_inference_type(uid):
|
|
51 |
with open(get_yaml_path(uid), "r") as f:
|
52 |
config = yaml.load(f, Loader=yaml.FullLoader)
|
53 |
inference_type = config.get("inference_type", "")
|
54 |
-
f.close()
|
55 |
return inference_type
|
56 |
|
57 |
|
@@ -66,11 +64,9 @@ def write_inference_type(use_inference, inference_token, uid):
|
|
66 |
config["inference_type"] = "hf_pipeline"
|
67 |
# FIXME: A quick and temp fix for missing token
|
68 |
config["inference_token"] = ""
|
69 |
-
f.close()
|
70 |
# save inference_type to inference_type in yaml
|
71 |
with open(get_yaml_path(uid), "w") as f:
|
72 |
yaml.dump(config, f, Dumper=Dumper)
|
73 |
-
f.close()
|
74 |
|
75 |
|
76 |
# read column mapping from yaml file
|
@@ -80,7 +76,6 @@ def read_column_mapping(uid):
|
|
80 |
config = yaml.load(f, Loader=yaml.FullLoader)
|
81 |
if config:
|
82 |
column_mapping = config.get("column_mapping", dict())
|
83 |
-
f.close()
|
84 |
return column_mapping
|
85 |
|
86 |
|
@@ -88,7 +83,6 @@ def read_column_mapping(uid):
|
|
88 |
def write_column_mapping(mapping, uid):
|
89 |
with open(get_yaml_path(uid), "r") as f:
|
90 |
config = yaml.load(f, Loader=yaml.FullLoader)
|
91 |
-
f.close()
|
92 |
|
93 |
if config is None:
|
94 |
return
|
@@ -96,10 +90,9 @@ def write_column_mapping(mapping, uid):
|
|
96 |
del config["column_mapping"]
|
97 |
else:
|
98 |
config["column_mapping"] = mapping
|
99 |
-
|
100 |
with open(get_yaml_path(uid), "w") as f:
|
101 |
-
yaml
|
102 |
-
|
103 |
|
104 |
|
105 |
# convert column mapping dataframe to json
|
@@ -113,21 +106,20 @@ def convert_column_mapping_to_json(df, label=""):
|
|
113 |
|
114 |
def get_logs_file():
|
115 |
try:
|
116 |
-
|
117 |
-
|
118 |
except Exception:
|
119 |
return "Log file does not exist"
|
120 |
|
121 |
|
122 |
-
def write_log_to_user_file(
|
123 |
-
with open(f"./tmp/
|
124 |
f.write(log)
|
125 |
-
f.close()
|
126 |
|
127 |
|
128 |
-
def save_job_to_pipe(
|
129 |
with lock:
|
130 |
-
pipe.jobs.append((
|
131 |
|
132 |
|
133 |
def pop_job_from_pipe():
|
@@ -135,14 +127,17 @@ def pop_job_from_pipe():
|
|
135 |
return
|
136 |
job_info = pipe.jobs.pop()
|
137 |
pipe.current = job_info[2]
|
138 |
-
|
|
|
139 |
command = job_info[1]
|
140 |
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
|
|
|
|
148 |
pipe.current = None
|
|
|
1 |
import os
|
2 |
+
from pathlib import Path
|
3 |
import subprocess
|
4 |
|
5 |
import yaml
|
|
|
7 |
import pipe
|
8 |
|
9 |
YAML_PATH = "./cicd/configs"
|
10 |
+
LOG_FILE = "temp_log"
|
11 |
|
12 |
|
13 |
class Dumper(yaml.Dumper):
|
|
|
30 |
with open(get_yaml_path(uid), "r") as f:
|
31 |
config = yaml.load(f, Loader=yaml.FullLoader)
|
32 |
scanners = config.get("detectors", [])
|
|
|
33 |
return scanners
|
34 |
|
35 |
|
|
|
39 |
config = yaml.load(f, Loader=yaml.FullLoader)
|
40 |
if config:
|
41 |
config["detectors"] = scanners
|
|
|
42 |
# save scanners to detectors in yaml
|
43 |
with open(get_yaml_path(uid), "w") as f:
|
44 |
yaml.dump(config, f, Dumper=Dumper)
|
|
|
45 |
|
46 |
|
47 |
# read model_type from yaml file
|
|
|
50 |
with open(get_yaml_path(uid), "r") as f:
|
51 |
config = yaml.load(f, Loader=yaml.FullLoader)
|
52 |
inference_type = config.get("inference_type", "")
|
|
|
53 |
return inference_type
|
54 |
|
55 |
|
|
|
64 |
config["inference_type"] = "hf_pipeline"
|
65 |
# FIXME: A quick and temp fix for missing token
|
66 |
config["inference_token"] = ""
|
|
|
67 |
# save inference_type to inference_type in yaml
|
68 |
with open(get_yaml_path(uid), "w") as f:
|
69 |
yaml.dump(config, f, Dumper=Dumper)
|
|
|
70 |
|
71 |
|
72 |
# read column mapping from yaml file
|
|
|
76 |
config = yaml.load(f, Loader=yaml.FullLoader)
|
77 |
if config:
|
78 |
column_mapping = config.get("column_mapping", dict())
|
|
|
79 |
return column_mapping
|
80 |
|
81 |
|
|
|
83 |
def write_column_mapping(mapping, uid):
|
84 |
with open(get_yaml_path(uid), "r") as f:
|
85 |
config = yaml.load(f, Loader=yaml.FullLoader)
|
|
|
86 |
|
87 |
if config is None:
|
88 |
return
|
|
|
90 |
del config["column_mapping"]
|
91 |
else:
|
92 |
config["column_mapping"] = mapping
|
|
|
93 |
with open(get_yaml_path(uid), "w") as f:
|
94 |
+
# yaml Dumper will by default sort the keys
|
95 |
+
yaml.dump(config, f, Dumper=Dumper, sort_keys=False)
|
96 |
|
97 |
|
98 |
# convert column mapping dataframe to json
|
|
|
106 |
|
107 |
def get_logs_file():
|
108 |
try:
|
109 |
+
with open(LOG_FILE, "r") as file:
|
110 |
+
return file.read()
|
111 |
except Exception:
|
112 |
return "Log file does not exist"
|
113 |
|
114 |
|
115 |
+
def write_log_to_user_file(task_id, log):
|
116 |
+
with open(f"./tmp/{task_id}.log", "a") as f:
|
117 |
f.write(log)
|
|
|
118 |
|
119 |
|
120 |
+
def save_job_to_pipe(task_id, job, description, lock):
|
121 |
with lock:
|
122 |
+
pipe.jobs.append((task_id, job, description))
|
123 |
|
124 |
|
125 |
def pop_job_from_pipe():
|
|
|
127 |
return
|
128 |
job_info = pipe.jobs.pop()
|
129 |
pipe.current = job_info[2]
|
130 |
+
task_id = job_info[0]
|
131 |
+
write_log_to_user_file(task_id, f"Running job id {task_id}\n")
|
132 |
command = job_info[1]
|
133 |
|
134 |
+
# Link to LOG_FILE
|
135 |
+
log_file_path = Path(LOG_FILE)
|
136 |
+
if log_file_path.exists():
|
137 |
+
log_file_path.unlink()
|
138 |
+
os.symlink(f"./tmp/{task_id}.log", LOG_FILE)
|
139 |
+
|
140 |
+
with open(f"./tmp/{task_id}.log", "a") as log_file:
|
141 |
+
p = subprocess.Popen(command, stdout=log_file, stderr=subprocess.STDOUT)
|
142 |
+
p.wait()
|
143 |
pipe.current = None
|
requirements.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
giskard
|
2 |
huggingface_hub
|
3 |
torch==2.0.1
|
4 |
transformers
|
|
|
1 |
+
giskard==2.1.2
|
2 |
huggingface_hub
|
3 |
torch==2.0.1
|
4 |
transformers
|
text_classification.py
CHANGED
@@ -15,8 +15,17 @@ def get_labels_and_features_from_dataset(dataset_id, dataset_config, split):
|
|
15 |
try:
|
16 |
ds = datasets.load_dataset(dataset_id, dataset_config)[split]
|
17 |
dataset_features = ds.features
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
return labels, features
|
21 |
except Exception as e:
|
22 |
logging.warning(
|
|
|
15 |
try:
|
16 |
ds = datasets.load_dataset(dataset_id, dataset_config)[split]
|
17 |
dataset_features = ds.features
|
18 |
+
label_keys = [i for i in dataset_features.keys() if i.startswith('label')]
|
19 |
+
if len(label_keys) == 0: # no labels found
|
20 |
+
# return everything for post processing
|
21 |
+
return list(dataset_features.keys()), list(dataset_features.keys())
|
22 |
+
if not isinstance(dataset_features[label_keys[0]], datasets.ClassLabel):
|
23 |
+
if hasattr(dataset_features[label_keys[0]], 'feature'):
|
24 |
+
label_feat = dataset_features[label_keys[0]].feature
|
25 |
+
labels = label_feat.names
|
26 |
+
else:
|
27 |
+
labels = [dataset_features[label_keys[0]].names]
|
28 |
+
features = [f for f in dataset_features.keys() if not f.startswith("label")]
|
29 |
return labels, features
|
30 |
except Exception as e:
|
31 |
logging.warning(
|
text_classification_ui_helpers.py
CHANGED
@@ -10,7 +10,7 @@ from transformers.pipelines import TextClassificationPipeline
|
|
10 |
from wordings import get_styled_input
|
11 |
|
12 |
from io_utils import (get_yaml_path, read_column_mapping, save_job_to_pipe,
|
13 |
-
write_column_mapping,
|
14 |
write_log_to_user_file)
|
15 |
from text_classification import (check_model, get_example_prediction,
|
16 |
get_labels_and_features_from_dataset)
|
@@ -18,7 +18,7 @@ from wordings import (CHECK_CONFIG_OR_SPLIT_RAW,
|
|
18 |
CONFIRM_MAPPING_DETAILS_FAIL_RAW,
|
19 |
MAPPING_STYLED_ERROR_WARNING)
|
20 |
|
21 |
-
MAX_LABELS =
|
22 |
MAX_FEATURES = 20
|
23 |
|
24 |
HF_REPO_ID = "HF_REPO_ID"
|
@@ -51,10 +51,8 @@ def check_dataset_and_get_split(dataset_id, dataset_config):
|
|
51 |
pass
|
52 |
|
53 |
|
54 |
-
def select_run_mode(run_inf
|
55 |
if run_inf:
|
56 |
-
if len(inf_token) > 0:
|
57 |
-
write_inference_type(run_inf, inf_token, uid)
|
58 |
return (gr.update(visible=True), gr.update(value=False))
|
59 |
else:
|
60 |
return (gr.update(visible=False), gr.update(value=True))
|
@@ -68,46 +66,62 @@ def deselect_run_inference(run_local):
|
|
68 |
|
69 |
|
70 |
def write_column_mapping_to_config(
|
71 |
-
|
72 |
):
|
73 |
# TODO: Substitute 'text' with more features for zero-shot
|
74 |
# we are not using ds features because we only support "text" for now
|
75 |
-
|
76 |
-
|
77 |
-
)
|
78 |
if labels is None:
|
79 |
return
|
|
|
|
|
80 |
|
81 |
-
all_mappings = dict()
|
82 |
-
|
83 |
-
if "labels" not in all_mappings.keys():
|
84 |
-
all_mappings["labels"] = dict()
|
85 |
-
for i, label in enumerate(labels[:MAX_LABELS]):
|
86 |
-
if label:
|
87 |
-
all_mappings["labels"][label] = ds_labels[i % len(ds_labels)]
|
88 |
-
if "features" not in all_mappings.keys():
|
89 |
-
all_mappings["features"] = dict()
|
90 |
-
for _, feat in enumerate(labels[MAX_LABELS : (MAX_LABELS + MAX_FEATURES)]):
|
91 |
-
if feat:
|
92 |
-
# TODO: Substitute 'text' with more features for zero-shot
|
93 |
-
all_mappings["features"]["text"] = feat
|
94 |
write_column_mapping(all_mappings, uid)
|
95 |
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
model_labels = list(model_id2label.values())
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
lables = [
|
101 |
gr.Dropdown(
|
102 |
label=f"{label}",
|
103 |
choices=model_labels,
|
104 |
-
value=model_id2label[i %
|
105 |
interactive=True,
|
106 |
visible=True,
|
107 |
)
|
108 |
-
for i, label in enumerate(ds_labels
|
109 |
]
|
110 |
lables += [gr.Dropdown(visible=False) for _ in range(MAX_LABELS - len(lables))]
|
|
|
|
|
111 |
# TODO: Substitute 'text' with more features for zero-shot
|
112 |
features = [
|
113 |
gr.Dropdown(
|
@@ -122,11 +136,27 @@ def list_labels_and_features_from_dataset(ds_labels, ds_features, model_id2label
|
|
122 |
features += [
|
123 |
gr.Dropdown(visible=False) for _ in range(MAX_FEATURES - len(features))
|
124 |
]
|
|
|
|
|
|
|
125 |
return lables + features
|
126 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
-
def
|
129 |
-
model_id, dataset_id, dataset_config, dataset_split
|
130 |
):
|
131 |
ppl = check_model(model_id)
|
132 |
if ppl is None or not isinstance(ppl, TextClassificationPipeline):
|
@@ -134,6 +164,8 @@ def check_model_and_show_prediction(
|
|
134 |
return (
|
135 |
gr.update(visible=False),
|
136 |
gr.update(visible=False),
|
|
|
|
|
137 |
*[gr.update(visible=False) for _ in range(MAX_LABELS + MAX_FEATURES)],
|
138 |
)
|
139 |
|
@@ -147,6 +179,7 @@ def check_model_and_show_prediction(
|
|
147 |
gr.update(visible=False),
|
148 |
gr.update(visible=False),
|
149 |
gr.update(visible=False, open=False),
|
|
|
150 |
*dropdown_placement,
|
151 |
)
|
152 |
model_id2label = ppl.model.config.id2label
|
@@ -161,6 +194,7 @@ def check_model_and_show_prediction(
|
|
161 |
gr.update(visible=False),
|
162 |
gr.update(visible=False),
|
163 |
gr.update(visible=False, open=False),
|
|
|
164 |
*dropdown_placement,
|
165 |
)
|
166 |
|
@@ -168,6 +202,7 @@ def check_model_and_show_prediction(
|
|
168 |
ds_labels,
|
169 |
ds_features,
|
170 |
model_id2label,
|
|
|
171 |
)
|
172 |
|
173 |
# when labels or features are not aligned
|
@@ -180,6 +215,7 @@ def check_model_and_show_prediction(
|
|
180 |
gr.update(value=MAPPING_STYLED_ERROR_WARNING, visible=True),
|
181 |
gr.update(visible=False),
|
182 |
gr.update(visible=True, open=True),
|
|
|
183 |
*column_mappings,
|
184 |
)
|
185 |
|
@@ -190,13 +226,11 @@ def check_model_and_show_prediction(
|
|
190 |
gr.update(value=get_styled_input(prediction_input), visible=True),
|
191 |
gr.update(value=prediction_output, visible=True),
|
192 |
gr.update(visible=True, open=False),
|
|
|
193 |
*column_mappings,
|
194 |
)
|
195 |
|
196 |
-
|
197 |
-
def try_submit(m_id, d_id, config, split, local, uid):
|
198 |
-
all_mappings = read_column_mapping(uid)
|
199 |
-
|
200 |
if all_mappings is None:
|
201 |
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
|
202 |
return (gr.update(interactive=True), gr.update(visible=False))
|
@@ -204,6 +238,8 @@ def try_submit(m_id, d_id, config, split, local, uid):
|
|
204 |
if "labels" not in all_mappings.keys():
|
205 |
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
|
206 |
return (gr.update(interactive=True), gr.update(visible=False))
|
|
|
|
|
207 |
label_mapping = {}
|
208 |
for i, label in zip(
|
209 |
range(len(all_mappings["labels"].keys())), all_mappings["labels"].keys()
|
@@ -214,73 +250,88 @@ def try_submit(m_id, d_id, config, split, local, uid):
|
|
214 |
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
|
215 |
return (gr.update(interactive=True), gr.update(visible=False))
|
216 |
feature_mapping = all_mappings["features"]
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
|
218 |
leaderboard_dataset = None
|
219 |
if os.environ.get("SPACE_ID") == "giskardai/giskard-evaluator":
|
220 |
leaderboard_dataset = "ZeroCommand/test-giskard-report"
|
|
|
|
|
|
|
|
|
|
|
221 |
|
222 |
# TODO: Set column mapping for some dataset such as `amazon_polarity`
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
|
|
|
|
|
|
|
|
277 |
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
|
283 |
-
else:
|
284 |
-
gr.Info("TODO: Submit task to an endpoint")
|
285 |
|
286 |
-
|
|
|
|
|
|
10 |
from wordings import get_styled_input
|
11 |
|
12 |
from io_utils import (get_yaml_path, read_column_mapping, save_job_to_pipe,
|
13 |
+
write_column_mapping,
|
14 |
write_log_to_user_file)
|
15 |
from text_classification import (check_model, get_example_prediction,
|
16 |
get_labels_and_features_from_dataset)
|
|
|
18 |
CONFIRM_MAPPING_DETAILS_FAIL_RAW,
|
19 |
MAPPING_STYLED_ERROR_WARNING)
|
20 |
|
21 |
+
MAX_LABELS = 40
|
22 |
MAX_FEATURES = 20
|
23 |
|
24 |
HF_REPO_ID = "HF_REPO_ID"
|
|
|
51 |
pass
|
52 |
|
53 |
|
54 |
+
def select_run_mode(run_inf):
|
55 |
if run_inf:
|
|
|
|
|
56 |
return (gr.update(visible=True), gr.update(value=False))
|
57 |
else:
|
58 |
return (gr.update(visible=False), gr.update(value=True))
|
|
|
66 |
|
67 |
|
68 |
def write_column_mapping_to_config(
|
69 |
+
uid, *labels
|
70 |
):
|
71 |
# TODO: Substitute 'text' with more features for zero-shot
|
72 |
# we are not using ds features because we only support "text" for now
|
73 |
+
all_mappings = read_column_mapping(uid)
|
74 |
+
|
|
|
75 |
if labels is None:
|
76 |
return
|
77 |
+
all_mappings = export_mappings(all_mappings, "labels", None, labels[:MAX_LABELS])
|
78 |
+
all_mappings = export_mappings(all_mappings, "features", ["text"], labels[MAX_LABELS : (MAX_LABELS + MAX_FEATURES)])
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
write_column_mapping(all_mappings, uid)
|
81 |
|
82 |
+
def export_mappings(all_mappings, key, subkeys, values):
|
83 |
+
if key not in all_mappings.keys():
|
84 |
+
all_mappings[key] = dict()
|
85 |
+
if subkeys is None:
|
86 |
+
subkeys = list(all_mappings[key].keys())
|
87 |
+
|
88 |
+
if not subkeys:
|
89 |
+
logging.debug(f"subkeys is empty for {key}")
|
90 |
+
return all_mappings
|
91 |
+
|
92 |
+
for i, subkey in enumerate(subkeys):
|
93 |
+
if subkey:
|
94 |
+
all_mappings[key][subkey] = values[i % len(values)]
|
95 |
+
return all_mappings
|
96 |
+
|
97 |
+
def list_labels_and_features_from_dataset(ds_labels, ds_features, model_id2label, uid):
|
98 |
model_labels = list(model_id2label.values())
|
99 |
+
all_mappings = read_column_mapping(uid)
|
100 |
+
# For flattened raw datasets with no labels
|
101 |
+
# check if there are shared labels between model and dataset
|
102 |
+
shared_labels = set(model_labels).intersection(set(ds_labels))
|
103 |
+
if shared_labels:
|
104 |
+
ds_labels = list(shared_labels)
|
105 |
+
if len(ds_labels) > MAX_LABELS:
|
106 |
+
ds_labels = ds_labels[:MAX_LABELS]
|
107 |
+
gr.Warning(f"The number of labels is truncated to length {MAX_LABELS}")
|
108 |
+
|
109 |
+
ds_labels.sort()
|
110 |
+
model_labels.sort()
|
111 |
+
|
112 |
lables = [
|
113 |
gr.Dropdown(
|
114 |
label=f"{label}",
|
115 |
choices=model_labels,
|
116 |
+
value=model_id2label[i % len(model_labels)],
|
117 |
interactive=True,
|
118 |
visible=True,
|
119 |
)
|
120 |
+
for i, label in enumerate(ds_labels)
|
121 |
]
|
122 |
lables += [gr.Dropdown(visible=False) for _ in range(MAX_LABELS - len(lables))]
|
123 |
+
all_mappings = export_mappings(all_mappings, "labels", ds_labels, model_labels)
|
124 |
+
|
125 |
# TODO: Substitute 'text' with more features for zero-shot
|
126 |
features = [
|
127 |
gr.Dropdown(
|
|
|
136 |
features += [
|
137 |
gr.Dropdown(visible=False) for _ in range(MAX_FEATURES - len(features))
|
138 |
]
|
139 |
+
all_mappings = export_mappings(all_mappings, "features", ["text"], ds_features)
|
140 |
+
write_column_mapping(all_mappings, uid)
|
141 |
+
|
142 |
return lables + features
|
143 |
|
144 |
+
def precheck_model_ds_enable_example_btn(model_id, dataset_id, dataset_config, dataset_split):
|
145 |
+
ppl = check_model(model_id)
|
146 |
+
if ppl is None or not isinstance(ppl, TextClassificationPipeline):
|
147 |
+
gr.Warning("Please check your model.")
|
148 |
+
return gr.update(interactive=False)
|
149 |
+
ds_labels, ds_features = get_labels_and_features_from_dataset(
|
150 |
+
dataset_id, dataset_config, dataset_split
|
151 |
+
)
|
152 |
+
if not isinstance(ds_labels, list) or not isinstance(ds_features, list):
|
153 |
+
gr.Warning(CHECK_CONFIG_OR_SPLIT_RAW)
|
154 |
+
return gr.update(interactive=False)
|
155 |
+
|
156 |
+
return gr.update(interactive=True)
|
157 |
|
158 |
+
def align_columns_and_show_prediction(
|
159 |
+
model_id, dataset_id, dataset_config, dataset_split, uid
|
160 |
):
|
161 |
ppl = check_model(model_id)
|
162 |
if ppl is None or not isinstance(ppl, TextClassificationPipeline):
|
|
|
164 |
return (
|
165 |
gr.update(visible=False),
|
166 |
gr.update(visible=False),
|
167 |
+
gr.update(visible=False, open=False),
|
168 |
+
gr.update(interactive=False),
|
169 |
*[gr.update(visible=False) for _ in range(MAX_LABELS + MAX_FEATURES)],
|
170 |
)
|
171 |
|
|
|
179 |
gr.update(visible=False),
|
180 |
gr.update(visible=False),
|
181 |
gr.update(visible=False, open=False),
|
182 |
+
gr.update(interactive=False),
|
183 |
*dropdown_placement,
|
184 |
)
|
185 |
model_id2label = ppl.model.config.id2label
|
|
|
194 |
gr.update(visible=False),
|
195 |
gr.update(visible=False),
|
196 |
gr.update(visible=False, open=False),
|
197 |
+
gr.update(interactive=False),
|
198 |
*dropdown_placement,
|
199 |
)
|
200 |
|
|
|
202 |
ds_labels,
|
203 |
ds_features,
|
204 |
model_id2label,
|
205 |
+
uid,
|
206 |
)
|
207 |
|
208 |
# when labels or features are not aligned
|
|
|
215 |
gr.update(value=MAPPING_STYLED_ERROR_WARNING, visible=True),
|
216 |
gr.update(visible=False),
|
217 |
gr.update(visible=True, open=True),
|
218 |
+
gr.update(interactive=True),
|
219 |
*column_mappings,
|
220 |
)
|
221 |
|
|
|
226 |
gr.update(value=get_styled_input(prediction_input), visible=True),
|
227 |
gr.update(value=prediction_output, visible=True),
|
228 |
gr.update(visible=True, open=False),
|
229 |
+
gr.update(interactive=True),
|
230 |
*column_mappings,
|
231 |
)
|
232 |
|
233 |
+
def check_column_mapping_keys_validity(all_mappings):
|
|
|
|
|
|
|
234 |
if all_mappings is None:
|
235 |
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
|
236 |
return (gr.update(interactive=True), gr.update(visible=False))
|
|
|
238 |
if "labels" not in all_mappings.keys():
|
239 |
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
|
240 |
return (gr.update(interactive=True), gr.update(visible=False))
|
241 |
+
|
242 |
+
def construct_label_and_feature_mapping(all_mappings):
|
243 |
label_mapping = {}
|
244 |
for i, label in zip(
|
245 |
range(len(all_mappings["labels"].keys())), all_mappings["labels"].keys()
|
|
|
250 |
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
|
251 |
return (gr.update(interactive=True), gr.update(visible=False))
|
252 |
feature_mapping = all_mappings["features"]
|
253 |
+
return label_mapping, feature_mapping
|
254 |
+
|
255 |
+
def try_submit(m_id, d_id, config, split, local, inference, inference_token, uid):
|
256 |
+
all_mappings = read_column_mapping(uid)
|
257 |
+
check_column_mapping_keys_validity(all_mappings)
|
258 |
+
label_mapping, feature_mapping = construct_label_and_feature_mapping(all_mappings)
|
259 |
|
260 |
leaderboard_dataset = None
|
261 |
if os.environ.get("SPACE_ID") == "giskardai/giskard-evaluator":
|
262 |
leaderboard_dataset = "ZeroCommand/test-giskard-report"
|
263 |
+
|
264 |
+
if local:
|
265 |
+
inference_type = "hf_pipeline"
|
266 |
+
if inference and inference_token:
|
267 |
+
inference_type = "hf_inference_api"
|
268 |
|
269 |
# TODO: Set column mapping for some dataset such as `amazon_polarity`
|
270 |
+
command = [
|
271 |
+
"giskard_scanner",
|
272 |
+
"--loader",
|
273 |
+
"huggingface",
|
274 |
+
"--model",
|
275 |
+
m_id,
|
276 |
+
"--dataset",
|
277 |
+
d_id,
|
278 |
+
"--dataset_config",
|
279 |
+
config,
|
280 |
+
"--dataset_split",
|
281 |
+
split,
|
282 |
+
"--hf_token",
|
283 |
+
os.environ.get(HF_WRITE_TOKEN),
|
284 |
+
"--discussion_repo",
|
285 |
+
os.environ.get(HF_REPO_ID) or os.environ.get(HF_SPACE_ID),
|
286 |
+
"--output_format",
|
287 |
+
"markdown",
|
288 |
+
"--output_portal",
|
289 |
+
"huggingface",
|
290 |
+
"--feature_mapping",
|
291 |
+
json.dumps(feature_mapping),
|
292 |
+
"--label_mapping",
|
293 |
+
json.dumps(label_mapping),
|
294 |
+
"--scan_config",
|
295 |
+
get_yaml_path(uid),
|
296 |
+
"--leaderboard_dataset",
|
297 |
+
leaderboard_dataset,
|
298 |
+
"--inference_type",
|
299 |
+
inference_type,
|
300 |
+
"--inference_token",
|
301 |
+
inference_token,
|
302 |
+
]
|
303 |
+
if os.environ.get(HF_GSK_HUB_KEY):
|
304 |
+
command.append("--giskard_hub_api_key")
|
305 |
+
command.append(os.environ.get(HF_GSK_HUB_KEY))
|
306 |
+
if os.environ.get(HF_GSK_HUB_URL):
|
307 |
+
command.append("--giskard_hub_url")
|
308 |
+
command.append(os.environ.get(HF_GSK_HUB_URL))
|
309 |
+
if os.environ.get(HF_GSK_HUB_PROJECT_KEY):
|
310 |
+
command.append("--giskard_hub_project_key")
|
311 |
+
command.append(os.environ.get(HF_GSK_HUB_PROJECT_KEY))
|
312 |
+
if os.environ.get(HF_GSK_HUB_HF_TOKEN):
|
313 |
+
command.append("--giskard_hub_hf_token")
|
314 |
+
command.append(os.environ.get(HF_GSK_HUB_HF_TOKEN))
|
315 |
+
if os.environ.get(HF_GSK_HUB_UNLOCK_TOKEN):
|
316 |
+
command.append("--giskard_hub_unlock_token")
|
317 |
+
command.append(os.environ.get(HF_GSK_HUB_UNLOCK_TOKEN))
|
318 |
+
|
319 |
+
eval_str = f"[{m_id}]<{d_id}({config}, {split} set)>"
|
320 |
+
logging.info(f"Start local evaluation on {eval_str}")
|
321 |
+
save_job_to_pipe(uid, command, eval_str, threading.Lock())
|
322 |
+
print(command)
|
323 |
+
write_log_to_user_file(
|
324 |
+
uid,
|
325 |
+
f"Start local evaluation on {eval_str}. Please wait for your job to start...\n",
|
326 |
+
)
|
327 |
+
gr.Info(f"Start local evaluation on {eval_str}")
|
328 |
|
329 |
+
return (
|
330 |
+
gr.update(interactive=False),
|
331 |
+
gr.update(lines=5, visible=True, interactive=False),
|
332 |
+
)
|
333 |
|
|
|
|
|
334 |
|
335 |
+
# TODO: Submit task to an endpoint")
|
336 |
+
|
337 |
+
# return (gr.update(interactive=True), gr.update(visible=False)) # Submit button
|