3dtest / configs /imvoxelnet /imvoxelnet_8xb4_kitti-3d-car.py
giantmonkeyTC
mm2
c2ca15f
raw
history blame
5.49 kB
_base_ = [
'../_base_/schedules/mmdet-schedule-1x.py', '../_base_/default_runtime.py'
]
model = dict(
type='ImVoxelNet',
data_preprocessor=dict(
type='Det3DDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True,
pad_size_divisor=32),
backbone=dict(
type='mmdet.ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=False),
norm_eval=True,
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50'),
style='pytorch'),
neck=dict(
type='mmdet.FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=64,
num_outs=4),
neck_3d=dict(type='OutdoorImVoxelNeck', in_channels=64, out_channels=256),
bbox_head=dict(
type='Anchor3DHead',
num_classes=1,
in_channels=256,
feat_channels=256,
use_direction_classifier=True,
anchor_generator=dict(
type='AlignedAnchor3DRangeGenerator',
ranges=[[-0.16, -39.68, -1.78, 68.96, 39.68, -1.78]],
sizes=[[3.9, 1.6, 1.56]],
rotations=[0, 1.57],
reshape_out=True),
diff_rad_by_sin=True,
bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'),
loss_cls=dict(
type='mmdet.FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox=dict(
type='mmdet.SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0),
loss_dir=dict(
type='mmdet.CrossEntropyLoss', use_sigmoid=False,
loss_weight=0.2)),
n_voxels=[216, 248, 12],
coord_type='LIDAR',
prior_generator=dict(
type='AlignedAnchor3DRangeGenerator',
ranges=[[-0.16, -39.68, -3.08, 68.96, 39.68, 0.76]],
rotations=[.0]),
train_cfg=dict(
assigner=dict(
type='Max3DIoUAssigner',
iou_calculator=dict(type='mmdet3d.BboxOverlapsNearest3D'),
pos_iou_thr=0.6,
neg_iou_thr=0.45,
min_pos_iou=0.45,
ignore_iof_thr=-1),
allowed_border=0,
pos_weight=-1,
debug=False),
test_cfg=dict(
use_rotate_nms=True,
nms_across_levels=False,
nms_thr=0.01,
score_thr=0.1,
min_bbox_size=0,
nms_pre=100,
max_num=50))
dataset_type = 'KittiDataset'
data_root = 'data/kitti/'
class_names = ['Car']
input_modality = dict(use_lidar=False, use_camera=True)
point_cloud_range = [0, -39.68, -3, 69.12, 39.68, 1]
metainfo = dict(classes=class_names)
backend_args = None
train_pipeline = [
dict(type='LoadAnnotations3D', backend_args=backend_args),
dict(type='LoadImageFromFileMono3D', backend_args=backend_args),
dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
dict(
type='RandomResize', scale=[(1173, 352), (1387, 416)],
keep_ratio=True),
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
dict(type='Pack3DDetInputs', keys=['img', 'gt_bboxes_3d', 'gt_labels_3d'])
]
test_pipeline = [
dict(type='LoadImageFromFileMono3D', backend_args=backend_args),
dict(type='Resize', scale=(1280, 384), keep_ratio=True),
dict(type='Pack3DDetInputs', keys=['img'])
]
train_dataloader = dict(
batch_size=4,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type='RepeatDataset',
times=3,
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='kitti_infos_train.pkl',
data_prefix=dict(img='training/image_2'),
pipeline=train_pipeline,
modality=input_modality,
test_mode=False,
metainfo=metainfo,
box_type_3d='LiDAR',
backend_args=backend_args)))
val_dataloader = dict(
batch_size=1,
num_workers=1,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='kitti_infos_val.pkl',
data_prefix=dict(img='training/image_2'),
pipeline=test_pipeline,
modality=input_modality,
test_mode=True,
metainfo=metainfo,
box_type_3d='LiDAR',
backend_args=backend_args))
test_dataloader = val_dataloader
val_evaluator = dict(
type='KittiMetric',
ann_file=data_root + 'kitti_infos_val.pkl',
metric='bbox',
backend_args=backend_args)
test_evaluator = val_evaluator
# optimizer
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(
_delete_=True, type='AdamW', lr=0.0001, weight_decay=0.0001),
paramwise_cfg=dict(
custom_keys={'backbone': dict(lr_mult=0.1, decay_mult=1.0)}),
clip_grad=dict(max_norm=35., norm_type=2))
param_scheduler = [
dict(
type='MultiStepLR',
begin=0,
end=12,
by_epoch=True,
milestones=[8, 11],
gamma=0.1)
]
# hooks
default_hooks = dict(checkpoint=dict(type='CheckpointHook', max_keep_ckpts=1))
# runtime
find_unused_parameters = True # only 1 of 4 FPN outputs is used
vis_backends = [dict(type='LocalVisBackend')]
visualizer = dict(
type='Det3DLocalVisualizer', vis_backends=vis_backends, name='visualizer')