|
_base_ = [ |
|
'../_base_/schedules/mmdet-schedule-1x.py', '../_base_/default_runtime.py' |
|
] |
|
|
|
model = dict( |
|
type='ImVoxelNet', |
|
data_preprocessor=dict( |
|
type='Det3DDataPreprocessor', |
|
mean=[123.675, 116.28, 103.53], |
|
std=[58.395, 57.12, 57.375], |
|
bgr_to_rgb=True, |
|
pad_size_divisor=32), |
|
backbone=dict( |
|
type='mmdet.ResNet', |
|
depth=50, |
|
num_stages=4, |
|
out_indices=(0, 1, 2, 3), |
|
frozen_stages=1, |
|
norm_cfg=dict(type='BN', requires_grad=False), |
|
norm_eval=True, |
|
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50'), |
|
style='pytorch'), |
|
neck=dict( |
|
type='mmdet.FPN', |
|
in_channels=[256, 512, 1024, 2048], |
|
out_channels=64, |
|
num_outs=4), |
|
neck_3d=dict(type='OutdoorImVoxelNeck', in_channels=64, out_channels=256), |
|
bbox_head=dict( |
|
type='Anchor3DHead', |
|
num_classes=1, |
|
in_channels=256, |
|
feat_channels=256, |
|
use_direction_classifier=True, |
|
anchor_generator=dict( |
|
type='AlignedAnchor3DRangeGenerator', |
|
ranges=[[-0.16, -39.68, -1.78, 68.96, 39.68, -1.78]], |
|
sizes=[[3.9, 1.6, 1.56]], |
|
rotations=[0, 1.57], |
|
reshape_out=True), |
|
diff_rad_by_sin=True, |
|
bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'), |
|
loss_cls=dict( |
|
type='mmdet.FocalLoss', |
|
use_sigmoid=True, |
|
gamma=2.0, |
|
alpha=0.25, |
|
loss_weight=1.0), |
|
loss_bbox=dict( |
|
type='mmdet.SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0), |
|
loss_dir=dict( |
|
type='mmdet.CrossEntropyLoss', use_sigmoid=False, |
|
loss_weight=0.2)), |
|
n_voxels=[216, 248, 12], |
|
coord_type='LIDAR', |
|
prior_generator=dict( |
|
type='AlignedAnchor3DRangeGenerator', |
|
ranges=[[-0.16, -39.68, -3.08, 68.96, 39.68, 0.76]], |
|
rotations=[.0]), |
|
train_cfg=dict( |
|
assigner=dict( |
|
type='Max3DIoUAssigner', |
|
iou_calculator=dict(type='mmdet3d.BboxOverlapsNearest3D'), |
|
pos_iou_thr=0.6, |
|
neg_iou_thr=0.45, |
|
min_pos_iou=0.45, |
|
ignore_iof_thr=-1), |
|
allowed_border=0, |
|
pos_weight=-1, |
|
debug=False), |
|
test_cfg=dict( |
|
use_rotate_nms=True, |
|
nms_across_levels=False, |
|
nms_thr=0.01, |
|
score_thr=0.1, |
|
min_bbox_size=0, |
|
nms_pre=100, |
|
max_num=50)) |
|
|
|
dataset_type = 'KittiDataset' |
|
data_root = 'data/kitti/' |
|
class_names = ['Car'] |
|
input_modality = dict(use_lidar=False, use_camera=True) |
|
point_cloud_range = [0, -39.68, -3, 69.12, 39.68, 1] |
|
metainfo = dict(classes=class_names) |
|
|
|
backend_args = None |
|
|
|
train_pipeline = [ |
|
dict(type='LoadAnnotations3D', backend_args=backend_args), |
|
dict(type='LoadImageFromFileMono3D', backend_args=backend_args), |
|
dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), |
|
dict( |
|
type='RandomResize', scale=[(1173, 352), (1387, 416)], |
|
keep_ratio=True), |
|
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), |
|
dict(type='Pack3DDetInputs', keys=['img', 'gt_bboxes_3d', 'gt_labels_3d']) |
|
] |
|
test_pipeline = [ |
|
dict(type='LoadImageFromFileMono3D', backend_args=backend_args), |
|
dict(type='Resize', scale=(1280, 384), keep_ratio=True), |
|
dict(type='Pack3DDetInputs', keys=['img']) |
|
] |
|
|
|
train_dataloader = dict( |
|
batch_size=4, |
|
num_workers=4, |
|
persistent_workers=True, |
|
sampler=dict(type='DefaultSampler', shuffle=True), |
|
dataset=dict( |
|
type='RepeatDataset', |
|
times=3, |
|
dataset=dict( |
|
type=dataset_type, |
|
data_root=data_root, |
|
ann_file='kitti_infos_train.pkl', |
|
data_prefix=dict(img='training/image_2'), |
|
pipeline=train_pipeline, |
|
modality=input_modality, |
|
test_mode=False, |
|
metainfo=metainfo, |
|
box_type_3d='LiDAR', |
|
backend_args=backend_args))) |
|
val_dataloader = dict( |
|
batch_size=1, |
|
num_workers=1, |
|
persistent_workers=True, |
|
drop_last=False, |
|
sampler=dict(type='DefaultSampler', shuffle=False), |
|
dataset=dict( |
|
type=dataset_type, |
|
data_root=data_root, |
|
ann_file='kitti_infos_val.pkl', |
|
data_prefix=dict(img='training/image_2'), |
|
pipeline=test_pipeline, |
|
modality=input_modality, |
|
test_mode=True, |
|
metainfo=metainfo, |
|
box_type_3d='LiDAR', |
|
backend_args=backend_args)) |
|
test_dataloader = val_dataloader |
|
|
|
val_evaluator = dict( |
|
type='KittiMetric', |
|
ann_file=data_root + 'kitti_infos_val.pkl', |
|
metric='bbox', |
|
backend_args=backend_args) |
|
test_evaluator = val_evaluator |
|
|
|
|
|
optim_wrapper = dict( |
|
type='OptimWrapper', |
|
optimizer=dict( |
|
_delete_=True, type='AdamW', lr=0.0001, weight_decay=0.0001), |
|
paramwise_cfg=dict( |
|
custom_keys={'backbone': dict(lr_mult=0.1, decay_mult=1.0)}), |
|
clip_grad=dict(max_norm=35., norm_type=2)) |
|
param_scheduler = [ |
|
dict( |
|
type='MultiStepLR', |
|
begin=0, |
|
end=12, |
|
by_epoch=True, |
|
milestones=[8, 11], |
|
gamma=0.1) |
|
] |
|
|
|
|
|
default_hooks = dict(checkpoint=dict(type='CheckpointHook', max_keep_ckpts=1)) |
|
|
|
|
|
find_unused_parameters = True |
|
|
|
vis_backends = [dict(type='LocalVisBackend')] |
|
visualizer = dict( |
|
type='Det3DLocalVisualizer', vis_backends=vis_backends, name='visualizer') |
|
|