|
|
|
|
|
point_cloud_range = [-50, -50, -5, 50, 50, 3] |
|
|
|
|
|
|
|
|
|
class_names = [ |
|
'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle', |
|
'motorcycle', 'pedestrian', 'traffic_cone', 'barrier' |
|
] |
|
metainfo = dict(classes=class_names) |
|
dataset_type = 'NuScenesDataset' |
|
data_root = 'data/nuscenes/' |
|
|
|
|
|
input_modality = dict(use_lidar=True, use_camera=False) |
|
data_prefix = dict(pts='samples/LIDAR_TOP', img='', sweeps='sweeps/LIDAR_TOP') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
backend_args = None |
|
|
|
train_pipeline = [ |
|
dict( |
|
type='LoadPointsFromFile', |
|
coord_type='LIDAR', |
|
load_dim=5, |
|
use_dim=5, |
|
backend_args=backend_args), |
|
dict( |
|
type='LoadPointsFromMultiSweeps', |
|
sweeps_num=10, |
|
backend_args=backend_args), |
|
dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), |
|
dict( |
|
type='GlobalRotScaleTrans', |
|
rot_range=[-0.3925, 0.3925], |
|
scale_ratio_range=[0.95, 1.05], |
|
translation_std=[0, 0, 0]), |
|
dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), |
|
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), |
|
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), |
|
dict(type='ObjectNameFilter', classes=class_names), |
|
dict(type='PointShuffle'), |
|
dict( |
|
type='Pack3DDetInputs', |
|
keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) |
|
] |
|
test_pipeline = [ |
|
dict( |
|
type='LoadPointsFromFile', |
|
coord_type='LIDAR', |
|
load_dim=5, |
|
use_dim=5, |
|
backend_args=backend_args), |
|
dict( |
|
type='LoadPointsFromMultiSweeps', |
|
sweeps_num=10, |
|
test_mode=True, |
|
backend_args=backend_args), |
|
dict( |
|
type='MultiScaleFlipAug3D', |
|
img_scale=(1333, 800), |
|
pts_scale_ratio=1, |
|
flip=False, |
|
transforms=[ |
|
dict( |
|
type='GlobalRotScaleTrans', |
|
rot_range=[0, 0], |
|
scale_ratio_range=[1., 1.], |
|
translation_std=[0, 0, 0]), |
|
dict(type='RandomFlip3D'), |
|
dict( |
|
type='PointsRangeFilter', point_cloud_range=point_cloud_range) |
|
]), |
|
dict(type='Pack3DDetInputs', keys=['points']) |
|
] |
|
|
|
|
|
eval_pipeline = [ |
|
dict( |
|
type='LoadPointsFromFile', |
|
coord_type='LIDAR', |
|
load_dim=5, |
|
use_dim=5, |
|
backend_args=backend_args), |
|
dict( |
|
type='LoadPointsFromMultiSweeps', |
|
sweeps_num=10, |
|
test_mode=True, |
|
backend_args=backend_args), |
|
dict(type='Pack3DDetInputs', keys=['points']) |
|
] |
|
train_dataloader = dict( |
|
batch_size=4, |
|
num_workers=4, |
|
persistent_workers=True, |
|
sampler=dict(type='DefaultSampler', shuffle=True), |
|
dataset=dict( |
|
type=dataset_type, |
|
data_root=data_root, |
|
ann_file='nuscenes_infos_train.pkl', |
|
pipeline=train_pipeline, |
|
metainfo=metainfo, |
|
modality=input_modality, |
|
test_mode=False, |
|
data_prefix=data_prefix, |
|
|
|
|
|
box_type_3d='LiDAR', |
|
backend_args=backend_args)) |
|
test_dataloader = dict( |
|
batch_size=1, |
|
num_workers=1, |
|
persistent_workers=True, |
|
drop_last=False, |
|
sampler=dict(type='DefaultSampler', shuffle=False), |
|
dataset=dict( |
|
type=dataset_type, |
|
data_root=data_root, |
|
ann_file='nuscenes_infos_val.pkl', |
|
pipeline=test_pipeline, |
|
metainfo=metainfo, |
|
modality=input_modality, |
|
data_prefix=data_prefix, |
|
test_mode=True, |
|
box_type_3d='LiDAR', |
|
backend_args=backend_args)) |
|
val_dataloader = dict( |
|
batch_size=1, |
|
num_workers=1, |
|
persistent_workers=True, |
|
drop_last=False, |
|
sampler=dict(type='DefaultSampler', shuffle=False), |
|
dataset=dict( |
|
type=dataset_type, |
|
data_root=data_root, |
|
ann_file='nuscenes_infos_val.pkl', |
|
pipeline=test_pipeline, |
|
metainfo=metainfo, |
|
modality=input_modality, |
|
test_mode=True, |
|
data_prefix=data_prefix, |
|
box_type_3d='LiDAR', |
|
backend_args=backend_args)) |
|
|
|
val_evaluator = dict( |
|
type='NuScenesMetric', |
|
data_root=data_root, |
|
ann_file=data_root + 'nuscenes_infos_val.pkl', |
|
metric='bbox', |
|
backend_args=backend_args) |
|
test_evaluator = val_evaluator |
|
|
|
vis_backends = [dict(type='LocalVisBackend')] |
|
visualizer = dict( |
|
type='Det3DLocalVisualizer', vis_backends=vis_backends, name='visualizer') |
|
|