|
|
|
point_cloud_range = [0, -39.68, -3, 69.12, 39.68, 1] |
|
voxel_size = [0.16, 0.16, 4] |
|
model = dict( |
|
type='VoxelNet', |
|
data_preprocessor=dict( |
|
type='Det3DDataPreprocessor', |
|
voxel=True, |
|
voxel_layer=dict( |
|
max_num_points=32, |
|
point_cloud_range=point_cloud_range, |
|
voxel_size=voxel_size, |
|
max_voxels=(16000, 40000))), |
|
voxel_encoder=dict( |
|
type='PillarFeatureNet', |
|
in_channels=4, |
|
feat_channels=[64], |
|
with_distance=False, |
|
voxel_size=voxel_size, |
|
point_cloud_range=point_cloud_range, |
|
), |
|
middle_encoder=dict( |
|
type='PointPillarsScatter', |
|
in_channels=64, |
|
output_shape=[496, 432], |
|
), |
|
backbone=dict( |
|
type='SECOND', |
|
in_channels=64, |
|
layer_nums=[3, 5, 5], |
|
layer_strides=[2, 2, 2], |
|
out_channels=[64, 128, 256], |
|
), |
|
neck=dict( |
|
type='SECONDFPN', |
|
in_channels=[64, 128, 256], |
|
upsample_strides=[1, 2, 4], |
|
out_channels=[128, 128, 128], |
|
), |
|
bbox_head=dict( |
|
type='Anchor3DHead', |
|
num_classes=3, |
|
in_channels=384, |
|
feat_channels=384, |
|
use_direction_classifier=True, |
|
anchor_generator=dict( |
|
type='Anchor3DRangeGenerator', |
|
ranges=[ |
|
[0, -40.0, -0.6, 70.4, 40.0, -0.6], |
|
[0, -40.0, -0.6, 70.4, 40.0, -0.6], |
|
[0, -40.0, -1.78, 70.4, 40.0, -1.78], |
|
], |
|
sizes=[[0.8, 0.6, 1.73], [1.76, 0.6, 1.73], [3.9, 1.6, 1.56]], |
|
rotations=[0, 1.57], |
|
reshape_out=False), |
|
diff_rad_by_sin=True, |
|
bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'), |
|
loss_cls=dict( |
|
type='mmdet.FocalLoss', |
|
use_sigmoid=True, |
|
gamma=2.0, |
|
alpha=0.25, |
|
loss_weight=1.0), |
|
loss_bbox=dict( |
|
type='mmdet.SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0), |
|
loss_dir=dict( |
|
type='mmdet.CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2), |
|
), |
|
|
|
train_cfg=dict( |
|
assigner=[ |
|
dict( |
|
type='Max3DIoUAssigner', |
|
iou_calculator=dict(type='BboxOverlapsNearest3D'), |
|
pos_iou_thr=0.5, |
|
neg_iou_thr=0.35, |
|
min_pos_iou=0.35, |
|
ignore_iof_thr=-1), |
|
dict( |
|
type='Max3DIoUAssigner', |
|
iou_calculator=dict(type='BboxOverlapsNearest3D'), |
|
pos_iou_thr=0.5, |
|
neg_iou_thr=0.35, |
|
min_pos_iou=0.35, |
|
ignore_iof_thr=-1), |
|
dict( |
|
type='Max3DIoUAssigner', |
|
iou_calculator=dict(type='BboxOverlapsNearest3D'), |
|
pos_iou_thr=0.6, |
|
neg_iou_thr=0.45, |
|
min_pos_iou=0.45, |
|
ignore_iof_thr=-1), |
|
], |
|
allowed_border=0, |
|
pos_weight=-1, |
|
debug=False), |
|
test_cfg=dict( |
|
use_rotate_nms=True, |
|
nms_across_levels=False, |
|
nms_thr=0.01, |
|
score_thr=0.1, |
|
min_bbox_size=0, |
|
nms_pre=100, |
|
max_num=50)) |
|
|
|
|
|
dataset_type = 'KittiDataset' |
|
data_root = 'data/kitti/' |
|
class_names = ['Pedestrian', 'Cyclist', 'Car'] |
|
metainfo = dict(classes=class_names) |
|
|
|
input_modality = dict(use_lidar=True, use_camera=False) |
|
db_sampler = dict( |
|
data_root=data_root, |
|
info_path=data_root + 'kitti_dbinfos_train.pkl', |
|
rate=1.0, |
|
prepare=dict( |
|
filter_by_difficulty=[-1], |
|
filter_by_min_points=dict( |
|
Car=5, |
|
Pedestrian=5, |
|
Cyclist=5, |
|
)), |
|
classes=class_names, |
|
sample_groups=dict( |
|
Car=15, |
|
Pedestrian=15, |
|
Cyclist=15, |
|
)) |
|
|
|
train_pipeline = [ |
|
dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4), |
|
dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), |
|
dict(type='ObjectSample', db_sampler=db_sampler), |
|
dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), |
|
dict( |
|
type='GlobalRotScaleTrans', |
|
rot_range=[-0.78539816, 0.78539816], |
|
scale_ratio_range=[0.95, 1.05]), |
|
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), |
|
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), |
|
dict(type='PointShuffle'), |
|
dict( |
|
type='Pack3DDetInputs', |
|
keys=['points', 'gt_labels_3d', 'gt_bboxes_3d']) |
|
] |
|
test_pipeline = [ |
|
dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4), |
|
dict( |
|
type='MultiScaleFlipAug3D', |
|
img_scale=(1333, 800), |
|
pts_scale_ratio=1, |
|
flip=False, |
|
transforms=[ |
|
dict( |
|
type='GlobalRotScaleTrans', |
|
rot_range=[0, 0], |
|
scale_ratio_range=[1., 1.], |
|
translation_std=[0, 0, 0]), |
|
dict(type='RandomFlip3D'), |
|
dict( |
|
type='PointsRangeFilter', point_cloud_range=point_cloud_range), |
|
]), |
|
dict(type='Pack3DDetInputs', keys=['points']) |
|
] |
|
|
|
|
|
eval_pipeline = [ |
|
dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4), |
|
dict(type='Pack3DDetInputs', keys=['points']) |
|
] |
|
|
|
train_dataloader = dict( |
|
batch_size=4, |
|
num_workers=4, |
|
persistent_workers=True, |
|
sampler=dict(type='DefaultSampler', shuffle=True), |
|
dataset=dict( |
|
type=dataset_type, |
|
data_root=data_root, |
|
ann_file='kitti_infos_train.pkl', |
|
data_prefix=dict(pts='training/velodyne_reduced'), |
|
pipeline=train_pipeline, |
|
modality=input_modality, |
|
test_mode=False, |
|
metainfo=metainfo, |
|
|
|
|
|
box_type_3d='LiDAR')) |
|
|
|
val_dataloader = dict( |
|
batch_size=1, |
|
num_workers=1, |
|
persistent_workers=True, |
|
drop_last=False, |
|
sampler=dict(type='DefaultSampler', shuffle=False), |
|
dataset=dict( |
|
type=dataset_type, |
|
data_root=data_root, |
|
data_prefix=dict(pts='training/velodyne_reduced'), |
|
ann_file='kitti_infos_val.pkl', |
|
pipeline=test_pipeline, |
|
modality=input_modality, |
|
test_mode=True, |
|
metainfo=metainfo, |
|
box_type_3d='LiDAR')) |
|
test_dataloader = val_dataloader |
|
|
|
val_evaluator = dict( |
|
type='KittiMetric', |
|
ann_file=data_root + 'kitti_infos_val.pkl', |
|
metric='bbox') |
|
test_evaluator = val_evaluator |
|
|
|
|
|
lr = 0.0003 |
|
epoch_num = 80 |
|
optim_wrapper = dict( |
|
type='OptimWrapper', |
|
optimizer=dict(type='AdamW', lr=lr, betas=(0.95, 0.99), weight_decay=0.01), |
|
clip_grad=dict(max_norm=10, norm_type=2)) |
|
|
|
|
|
param_scheduler = [ |
|
dict( |
|
type='CosineAnnealingLR', |
|
T_max=epoch_num * 0.4, |
|
eta_min=lr * 10, |
|
begin=0, |
|
end=epoch_num * 0.4, |
|
by_epoch=True, |
|
convert_to_iter_based=True), |
|
dict( |
|
type='CosineAnnealingLR', |
|
T_max=epoch_num * 0.6, |
|
eta_min=lr * 1e-4, |
|
begin=epoch_num * 0.4, |
|
end=epoch_num * 1, |
|
by_epoch=True, |
|
convert_to_iter_based=True), |
|
dict( |
|
type='CosineAnnealingMomentum', |
|
T_max=epoch_num * 0.4, |
|
eta_min=0.85 / 0.95, |
|
begin=0, |
|
end=epoch_num * 0.4, |
|
by_epoch=True, |
|
convert_to_iter_based=True), |
|
dict( |
|
type='CosineAnnealingMomentum', |
|
T_max=epoch_num * 0.6, |
|
eta_min=1, |
|
begin=epoch_num * 0.4, |
|
end=epoch_num * 1, |
|
convert_to_iter_based=True) |
|
] |
|
|
|
train_cfg = dict(by_epoch=True, max_epochs=epoch_num, val_interval=50) |
|
val_cfg = dict() |
|
test_cfg = dict() |
|
auto_scale_lr = dict(enable=False, base_batch_size=32) |
|
|
|
default_scope = 'mmdet3d' |
|
|
|
default_hooks = dict( |
|
timer=dict(type='IterTimerHook'), |
|
logger=dict(type='LoggerHook', interval=50), |
|
param_scheduler=dict(type='ParamSchedulerHook'), |
|
checkpoint=dict(type='CheckpointHook', interval=1), |
|
sampler_seed=dict(type='DistSamplerSeedHook'), |
|
visualization=dict(type='Det3DVisualizationHook')) |
|
|
|
custom_hooks = [ |
|
dict(type='BenchmarkHook'), |
|
] |
|
|
|
env_cfg = dict( |
|
cudnn_benchmark=False, |
|
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), |
|
dist_cfg=dict(backend='nccl'), |
|
) |
|
|
|
vis_backends = [dict(type='LocalVisBackend')] |
|
visualizer = dict( |
|
type='Det3DLocalVisualizer', vis_backends=vis_backends, name='visualizer') |
|
log_processor = dict(type='LogProcessor', window_size=50, by_epoch=True) |
|
|
|
log_level = 'INFO' |
|
load_from = None |
|
resume = False |
|
work_dir = './work_dirs/pp_secfpn_80e' |
|
|