|
_base_ = [ |
|
'../_base_/models/pointpillars_hv_fpn_lyft.py', |
|
'../_base_/datasets/lyft-3d.py', |
|
'../_base_/schedules/schedule-2x.py', |
|
'../_base_/default_runtime.py', |
|
] |
|
point_cloud_range = [-100, -100, -5, 100, 100, 3] |
|
|
|
|
|
class_names = [ |
|
'bicycle', 'motorcycle', 'pedestrian', 'animal', 'car', |
|
'emergency_vehicle', 'bus', 'other_vehicle', 'truck' |
|
] |
|
backend_args = None |
|
|
|
train_pipeline = [ |
|
dict( |
|
type='LoadPointsFromFile', |
|
coord_type='LIDAR', |
|
load_dim=5, |
|
use_dim=5, |
|
backend_args=backend_args), |
|
dict( |
|
type='LoadPointsFromMultiSweeps', |
|
sweeps_num=10, |
|
backend_args=backend_args), |
|
dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), |
|
dict( |
|
type='GlobalRotScaleTrans', |
|
rot_range=[-0.3925, 0.3925], |
|
scale_ratio_range=[0.95, 1.05], |
|
translation_std=[0, 0, 0]), |
|
dict( |
|
type='RandomFlip3D', |
|
sync_2d=False, |
|
flip_ratio_bev_horizontal=0.5, |
|
flip_ratio_bev_vertical=0.5), |
|
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), |
|
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), |
|
dict(type='PointShuffle'), |
|
dict( |
|
type='Pack3DDetInputs', |
|
keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) |
|
] |
|
test_pipeline = [ |
|
dict( |
|
type='LoadPointsFromFile', |
|
coord_type='LIDAR', |
|
load_dim=5, |
|
use_dim=5, |
|
backend_args=backend_args), |
|
dict( |
|
type='LoadPointsFromMultiSweeps', |
|
sweeps_num=10, |
|
backend_args=backend_args), |
|
dict( |
|
type='MultiScaleFlipAug3D', |
|
img_scale=(1333, 800), |
|
pts_scale_ratio=1, |
|
flip=False, |
|
transforms=[ |
|
dict( |
|
type='GlobalRotScaleTrans', |
|
rot_range=[0, 0], |
|
scale_ratio_range=[1., 1.], |
|
translation_std=[0, 0, 0]), |
|
dict(type='RandomFlip3D'), |
|
dict( |
|
type='PointsRangeFilter', point_cloud_range=point_cloud_range) |
|
]), |
|
dict(type='Pack3DDetInputs', keys=['points']) |
|
] |
|
train_dataloader = dict( |
|
batch_size=2, num_workers=4, dataset=dict(pipeline=train_pipeline)) |
|
test_dataloader = dict(dataset=dict(pipeline=test_pipeline)) |
|
val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) |
|
|
|
|
|
model = dict( |
|
data_preprocessor=dict( |
|
voxel_layer=dict(point_cloud_range=[-100, -100, -5, 100, 100, 3])), |
|
pts_voxel_encoder=dict( |
|
feat_channels=[32, 64], |
|
point_cloud_range=[-100, -100, -5, 100, 100, 3]), |
|
pts_middle_encoder=dict(output_shape=[800, 800]), |
|
pts_neck=dict( |
|
_delete_=True, |
|
type='SECONDFPN', |
|
norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01), |
|
in_channels=[64, 128, 256], |
|
upsample_strides=[1, 2, 4], |
|
out_channels=[128, 128, 128]), |
|
pts_bbox_head=dict( |
|
_delete_=True, |
|
type='ShapeAwareHead', |
|
num_classes=9, |
|
in_channels=384, |
|
feat_channels=384, |
|
use_direction_classifier=True, |
|
anchor_generator=dict( |
|
type='AlignedAnchor3DRangeGeneratorPerCls', |
|
ranges=[[-100, -100, -1.0709302, 100, 100, -1.0709302], |
|
[-100, -100, -1.3220503, 100, 100, -1.3220503], |
|
[-100, -100, -0.9122268, 100, 100, -0.9122268], |
|
[-100, -100, -1.8012227, 100, 100, -1.8012227], |
|
[-100, -100, -1.0715024, 100, 100, -1.0715024], |
|
[-100, -100, -0.8871424, 100, 100, -0.8871424], |
|
[-100, -100, -0.3519405, 100, 100, -0.3519405], |
|
[-100, -100, -0.6276341, 100, 100, -0.6276341], |
|
[-100, -100, -0.3033737, 100, 100, -0.3033737]], |
|
sizes=[ |
|
[1.76, 0.63, 1.44], |
|
[2.35, 0.96, 1.59], |
|
[0.80, 0.76, 1.76], |
|
[0.73, 0.35, 0.50], |
|
[4.75, 1.92, 1.71], |
|
[6.52, 2.42, 2.34], |
|
[12.70, 2.92, 3.42], |
|
[8.17, 2.75, 3.20], |
|
[10.24, 2.84, 3.44] |
|
], |
|
custom_values=[], |
|
rotations=[0, 1.57], |
|
reshape_out=False), |
|
tasks=[ |
|
dict( |
|
num_class=2, |
|
class_names=['bicycle', 'motorcycle'], |
|
shared_conv_channels=(64, 64), |
|
shared_conv_strides=(1, 1), |
|
norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01)), |
|
dict( |
|
num_class=2, |
|
class_names=['pedestrian', 'animal'], |
|
shared_conv_channels=(64, 64), |
|
shared_conv_strides=(1, 1), |
|
norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01)), |
|
dict( |
|
num_class=2, |
|
class_names=['car', 'emergency_vehicle'], |
|
shared_conv_channels=(64, 64, 64), |
|
shared_conv_strides=(2, 1, 1), |
|
norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01)), |
|
dict( |
|
num_class=3, |
|
class_names=['bus', 'other_vehicle', 'truck'], |
|
shared_conv_channels=(64, 64, 64), |
|
shared_conv_strides=(2, 1, 1), |
|
norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01)) |
|
], |
|
assign_per_class=True, |
|
diff_rad_by_sin=True, |
|
dir_offset=-0.7854, |
|
dir_limit_offset=0, |
|
bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder', code_size=7), |
|
loss_cls=dict( |
|
type='mmdet.FocalLoss', |
|
use_sigmoid=True, |
|
gamma=2.0, |
|
alpha=0.25, |
|
loss_weight=1.0), |
|
loss_bbox=dict( |
|
type='mmdet.SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0), |
|
loss_dir=dict( |
|
type='mmdet.CrossEntropyLoss', use_sigmoid=False, |
|
loss_weight=0.2)), |
|
|
|
train_cfg=dict( |
|
_delete_=True, |
|
pts=dict( |
|
assigner=[ |
|
dict( |
|
type='Max3DIoUAssigner', |
|
iou_calculator=dict(type='BboxOverlapsNearest3D'), |
|
pos_iou_thr=0.55, |
|
neg_iou_thr=0.4, |
|
min_pos_iou=0.4, |
|
ignore_iof_thr=-1), |
|
dict( |
|
type='Max3DIoUAssigner', |
|
iou_calculator=dict(type='BboxOverlapsNearest3D'), |
|
pos_iou_thr=0.55, |
|
neg_iou_thr=0.4, |
|
min_pos_iou=0.4, |
|
ignore_iof_thr=-1), |
|
dict( |
|
type='Max3DIoUAssigner', |
|
iou_calculator=dict(type='BboxOverlapsNearest3D'), |
|
pos_iou_thr=0.55, |
|
neg_iou_thr=0.4, |
|
min_pos_iou=0.4, |
|
ignore_iof_thr=-1), |
|
dict( |
|
type='Max3DIoUAssigner', |
|
iou_calculator=dict(type='BboxOverlapsNearest3D'), |
|
pos_iou_thr=0.55, |
|
neg_iou_thr=0.4, |
|
min_pos_iou=0.4, |
|
ignore_iof_thr=-1), |
|
dict( |
|
type='Max3DIoUAssigner', |
|
iou_calculator=dict(type='BboxOverlapsNearest3D'), |
|
pos_iou_thr=0.6, |
|
neg_iou_thr=0.45, |
|
min_pos_iou=0.45, |
|
ignore_iof_thr=-1), |
|
dict( |
|
type='Max3DIoUAssigner', |
|
iou_calculator=dict(type='BboxOverlapsNearest3D'), |
|
pos_iou_thr=0.55, |
|
neg_iou_thr=0.4, |
|
min_pos_iou=0.4, |
|
ignore_iof_thr=-1), |
|
dict( |
|
type='Max3DIoUAssigner', |
|
iou_calculator=dict(type='BboxOverlapsNearest3D'), |
|
pos_iou_thr=0.6, |
|
neg_iou_thr=0.45, |
|
min_pos_iou=0.45, |
|
ignore_iof_thr=-1), |
|
dict( |
|
type='Max3DIoUAssigner', |
|
iou_calculator=dict(type='BboxOverlapsNearest3D'), |
|
pos_iou_thr=0.55, |
|
neg_iou_thr=0.4, |
|
min_pos_iou=0.4, |
|
ignore_iof_thr=-1), |
|
dict( |
|
type='Max3DIoUAssigner', |
|
iou_calculator=dict(type='BboxOverlapsNearest3D'), |
|
pos_iou_thr=0.6, |
|
neg_iou_thr=0.45, |
|
min_pos_iou=0.45, |
|
ignore_iof_thr=-1) |
|
], |
|
allowed_border=0, |
|
code_weight=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], |
|
pos_weight=-1, |
|
debug=False))) |
|
|
|
|
|
|
|
|
|
auto_scale_lr = dict(enable=False, base_batch_size=32) |
|
|