3dtest / mmdet3d /models /segmentors /encoder_decoder.py
giantmonkeyTC
mm2
c2ca15f
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Tuple
import numpy as np
import torch
from torch import Tensor
from torch import nn as nn
from mmdet3d.registry import MODELS
from mmdet3d.utils import ConfigType, OptConfigType, OptMultiConfig
from ...structures.det3d_data_sample import OptSampleList, SampleList
from ..utils import add_prefix
from .base import Base3DSegmentor
@MODELS.register_module()
class EncoderDecoder3D(Base3DSegmentor):
"""3D Encoder Decoder segmentors.
EncoderDecoder typically consists of backbone, decode_head, auxiliary_head.
Note that auxiliary_head is only used for deep supervision during training,
which could be dumped during inference.
1. The ``loss`` method is used to calculate the loss of model,
which includes two steps: (1) Extracts features to obtain the feature maps
(2) Call the decode head loss function to forward decode head model and
calculate losses.
.. code:: text
loss(): extract_feat() -> _decode_head_forward_train() -> _auxiliary_head_forward_train (optional)
_decode_head_forward_train(): decode_head.loss()
_auxiliary_head_forward_train(): auxiliary_head.loss (optional)
2. The ``predict`` method is used to predict segmentation results,
which includes two steps: (1) Run inference function to obtain the list of
seg_logits (2) Call post-processing function to obtain list of
``Det3DDataSample`` including ``pred_pts_seg``.
.. code:: text
predict(): inference() -> postprocess_result()
inference(): whole_inference()/slide_inference()
whole_inference()/slide_inference(): encoder_decoder()
encoder_decoder(): extract_feat() -> decode_head.predict()
4 The ``_forward`` method is used to output the tensor by running the model,
which includes two steps: (1) Extracts features to obtain the feature maps
(2) Call the decode head forward function to forward decode head model.
.. code:: text
_forward(): extract_feat() -> _decode_head.forward()
Args:
backbone (dict or :obj:`ConfigDict`): The config for the backnone of
segmentor.
decode_head (dict or :obj:`ConfigDict`): The config for the decode
head of segmentor.
neck (dict or :obj:`ConfigDict`, optional): The config for the neck of
segmentor. Defaults to None.
auxiliary_head (dict or :obj:`ConfigDict` or List[dict or
:obj:`ConfigDict`], optional): The config for the auxiliary head of
segmentor. Defaults to None.
loss_regularization (dict or :obj:`ConfigDict` or List[dict or
:obj:`ConfigDict`], optional): The config for the regularization
loass. Defaults to None.
train_cfg (dict or :obj:`ConfigDict`, optional): The config for
training. Defaults to None.
test_cfg (dict or :obj:`ConfigDict`, optional): The config for testing.
Defaults to None.
data_preprocessor (dict or :obj:`ConfigDict`, optional): The
pre-process config of :class:`BaseDataPreprocessor`.
Defaults to None.
init_cfg (dict or :obj:`ConfigDict` or List[dict or :obj:`ConfigDict`],
optional): The weight initialized config for :class:`BaseModule`.
Defaults to None.
""" # noqa: E501
def __init__(self,
backbone: ConfigType,
decode_head: ConfigType,
neck: OptConfigType = None,
auxiliary_head: OptMultiConfig = None,
loss_regularization: OptMultiConfig = None,
train_cfg: OptConfigType = None,
test_cfg: OptConfigType = None,
data_preprocessor: OptConfigType = None,
init_cfg: OptMultiConfig = None) -> None:
super(EncoderDecoder3D, self).__init__(
data_preprocessor=data_preprocessor, init_cfg=init_cfg)
self.backbone = MODELS.build(backbone)
if neck is not None:
self.neck = MODELS.build(neck)
self._init_decode_head(decode_head)
self._init_auxiliary_head(auxiliary_head)
self._init_loss_regularization(loss_regularization)
self.train_cfg = train_cfg
self.test_cfg = test_cfg
assert self.with_decode_head, \
'3D EncoderDecoder Segmentor should have a decode_head'
def _init_decode_head(self, decode_head: ConfigType) -> None:
"""Initialize ``decode_head``."""
self.decode_head = MODELS.build(decode_head)
self.num_classes = self.decode_head.num_classes
def _init_auxiliary_head(self,
auxiliary_head: OptMultiConfig = None) -> None:
"""Initialize ``auxiliary_head``."""
if auxiliary_head is not None:
if isinstance(auxiliary_head, list):
self.auxiliary_head = nn.ModuleList()
for head_cfg in auxiliary_head:
self.auxiliary_head.append(MODELS.build(head_cfg))
else:
self.auxiliary_head = MODELS.build(auxiliary_head)
def _init_loss_regularization(self,
loss_regularization: OptMultiConfig = None
) -> None:
"""Initialize ``loss_regularization``."""
if loss_regularization is not None:
if isinstance(loss_regularization, list):
self.loss_regularization = nn.ModuleList()
for loss_cfg in loss_regularization:
self.loss_regularization.append(MODELS.build(loss_cfg))
else:
self.loss_regularization = MODELS.build(loss_regularization)
def extract_feat(self, batch_inputs: Tensor) -> dict:
"""Extract features from points."""
x = self.backbone(batch_inputs)
if self.with_neck:
x = self.neck(x)
return x
def encode_decode(self, batch_inputs: Tensor,
batch_input_metas: List[dict]) -> Tensor:
"""Encode points with backbone and decode into a semantic segmentation
map of the same size as input.
Args:
batch_input (Tensor): Input point cloud sample
batch_input_metas (List[dict]): Meta information of a batch of
samples.
Returns:
Tensor: Segmentation logits of shape [B, num_classes, N].
"""
x = self.extract_feat(batch_inputs)
seg_logits = self.decode_head.predict(x, batch_input_metas,
self.test_cfg)
return seg_logits
def _decode_head_forward_train(
self, batch_inputs_dict: dict,
batch_data_samples: SampleList) -> Dict[str, Tensor]:
"""Run forward function and calculate loss for decode head in training.
Args:
batch_input (Tensor): Input point cloud sample
batch_data_samples (List[:obj:`Det3DDataSample`]): The det3d data
samples. It usually includes information such as `metainfo` and
`gt_pts_seg`.
Returns:
Dict[str, Tensor]: A dictionary of loss components for decode head.
"""
losses = dict()
loss_decode = self.decode_head.loss(batch_inputs_dict,
batch_data_samples, self.train_cfg)
losses.update(add_prefix(loss_decode, 'decode'))
return losses
def _auxiliary_head_forward_train(
self,
batch_inputs_dict: dict,
batch_data_samples: SampleList,
) -> Dict[str, Tensor]:
"""Run forward function and calculate loss for auxiliary head in
training.
Args:
batch_input (Tensor): Input point cloud sample
batch_data_samples (List[:obj:`Det3DDataSample`]): The det3d data
samples. It usually includes information such as `metainfo` and
`gt_pts_seg`.
Returns:
Dict[str, Tensor]: A dictionary of loss components for auxiliary
head.
"""
losses = dict()
if isinstance(self.auxiliary_head, nn.ModuleList):
for idx, aux_head in enumerate(self.auxiliary_head):
loss_aux = aux_head.loss(batch_inputs_dict, batch_data_samples,
self.train_cfg)
losses.update(add_prefix(loss_aux, f'aux_{idx}'))
else:
loss_aux = self.auxiliary_head.loss(batch_inputs_dict,
batch_data_samples,
self.train_cfg)
losses.update(add_prefix(loss_aux, 'aux'))
return losses
def _loss_regularization_forward_train(self) -> Dict[str, Tensor]:
"""Calculate regularization loss for model weight in training."""
losses = dict()
if isinstance(self.loss_regularization, nn.ModuleList):
for idx, regularize_loss in enumerate(self.loss_regularization):
loss_regularize = dict(
loss_regularize=regularize_loss(self.modules()))
losses.update(add_prefix(loss_regularize, f'regularize_{idx}'))
else:
loss_regularize = dict(
loss_regularize=self.loss_regularization(self.modules()))
losses.update(add_prefix(loss_regularize, 'regularize'))
return losses
def loss(self, batch_inputs_dict: dict,
batch_data_samples: SampleList) -> Dict[str, Tensor]:
"""Calculate losses from a batch of inputs and data samples.
Args:
batch_inputs_dict (dict): Input sample dict which
includes 'points' and 'imgs' keys.
- points (List[Tensor]): Point cloud of each sample.
- imgs (Tensor, optional): Image tensor has shape (B, C, H, W).
batch_data_samples (List[:obj:`Det3DDataSample`]): The det3d data
samples. It usually includes information such as `metainfo` and
`gt_pts_seg`.
Returns:
Dict[str, Tensor]: A dictionary of loss components.
"""
# extract features using backbone
points = torch.stack(batch_inputs_dict['points'])
x = self.extract_feat(points)
losses = dict()
loss_decode = self._decode_head_forward_train(x, batch_data_samples)
losses.update(loss_decode)
if self.with_auxiliary_head:
loss_aux = self._auxiliary_head_forward_train(
x, batch_data_samples)
losses.update(loss_aux)
if self.with_regularization_loss:
loss_regularize = self._loss_regularization_forward_train()
losses.update(loss_regularize)
return losses
@staticmethod
def _input_generation(coords,
patch_center: Tensor,
coord_max: Tensor,
feats: Tensor,
use_normalized_coord: bool = False) -> Tensor:
"""Generating model input.
Generate input by subtracting patch center and adding additional
features. Currently support colors and normalized xyz as features.
Args:
coords (Tensor): Sampled 3D point coordinate of shape [S, 3].
patch_center (Tensor): Center coordinate of the patch.
coord_max (Tensor): Max coordinate of all 3D points.
feats (Tensor): Features of sampled points of shape [S, C].
use_normalized_coord (bool): Whether to use normalized xyz as
additional features. Defaults to False.
Returns:
Tensor: The generated input data of shape [S, 3+C'].
"""
# subtract patch center, the z dimension is not centered
centered_coords = coords.clone()
centered_coords[:, 0] -= patch_center[0]
centered_coords[:, 1] -= patch_center[1]
# normalized coordinates as extra features
if use_normalized_coord:
normalized_coord = coords / coord_max
feats = torch.cat([feats, normalized_coord], dim=1)
points = torch.cat([centered_coords, feats], dim=1)
return points
def _sliding_patch_generation(self,
points: Tensor,
num_points: int,
block_size: float,
sample_rate: float = 0.5,
use_normalized_coord: bool = False,
eps: float = 1e-3) -> Tuple[Tensor, Tensor]:
"""Sampling points in a sliding window fashion.
First sample patches to cover all the input points.
Then sample points in each patch to batch points of a certain number.
Args:
points (Tensor): Input points of shape [N, 3+C].
num_points (int): Number of points to be sampled in each patch.
block_size (float): Size of a patch to sample.
sample_rate (float): Stride used in sliding patch. Defaults to 0.5.
use_normalized_coord (bool): Whether to use normalized xyz as
additional features. Defaults to False.
eps (float): A value added to patch boundary to guarantee points
coverage. Defaults to 1e-3.
Returns:
Tuple[Tensor, Tensor]:
- patch_points (Tensor): Points of different patches of shape
[K, N, 3+C].
- patch_idxs (Tensor): Index of each point in `patch_points` of
shape [K, N].
"""
device = points.device
# we assume the first three dims are points' 3D coordinates
# and the rest dims are their per-point features
coords = points[:, :3]
feats = points[:, 3:]
coord_max = coords.max(0)[0]
coord_min = coords.min(0)[0]
stride = block_size * sample_rate
num_grid_x = int(
torch.ceil((coord_max[0] - coord_min[0] - block_size) /
stride).item() + 1)
num_grid_y = int(
torch.ceil((coord_max[1] - coord_min[1] - block_size) /
stride).item() + 1)
patch_points, patch_idxs = [], []
for idx_y in range(num_grid_y):
s_y = coord_min[1] + idx_y * stride
e_y = torch.min(s_y + block_size, coord_max[1])
s_y = e_y - block_size
for idx_x in range(num_grid_x):
s_x = coord_min[0] + idx_x * stride
e_x = torch.min(s_x + block_size, coord_max[0])
s_x = e_x - block_size
# extract points within this patch
cur_min = torch.tensor([s_x, s_y, coord_min[2]]).to(device)
cur_max = torch.tensor([e_x, e_y, coord_max[2]]).to(device)
cur_choice = ((coords >= cur_min - eps) &
(coords <= cur_max + eps)).all(dim=1)
if not cur_choice.any(): # no points in this patch
continue
# sample points in this patch to multiple batches
cur_center = cur_min + block_size / 2.0
point_idxs = torch.nonzero(cur_choice, as_tuple=True)[0]
num_batch = int(np.ceil(point_idxs.shape[0] / num_points))
point_size = int(num_batch * num_points)
replace = point_size > 2 * point_idxs.shape[0]
num_repeat = point_size - point_idxs.shape[0]
if replace: # duplicate
point_idxs_repeat = point_idxs[torch.randint(
0, point_idxs.shape[0],
size=(num_repeat, )).to(device)]
else:
point_idxs_repeat = point_idxs[torch.randperm(
point_idxs.shape[0])[:num_repeat]]
choices = torch.cat([point_idxs, point_idxs_repeat], dim=0)
choices = choices[torch.randperm(choices.shape[0])]
# construct model input
point_batches = self._input_generation(
coords[choices],
cur_center,
coord_max,
feats[choices],
use_normalized_coord=use_normalized_coord)
patch_points.append(point_batches)
patch_idxs.append(choices)
patch_points = torch.cat(patch_points, dim=0)
patch_idxs = torch.cat(patch_idxs, dim=0)
# make sure all points are sampled at least once
assert torch.unique(patch_idxs).shape[0] == points.shape[0], \
'some points are not sampled in sliding inference'
return patch_points, patch_idxs
def slide_inference(self, point: Tensor, input_meta: dict,
rescale: bool) -> Tensor:
"""Inference by sliding-window with overlap.
Args:
point (Tensor): Input points of shape [N, 3+C].
input_meta (dict): Meta information of input sample.
rescale (bool): Whether transform to original number of points.
Will be used for voxelization based segmentors.
Returns:
Tensor: The output segmentation map of shape [num_classes, N].
"""
num_points = self.test_cfg.num_points
block_size = self.test_cfg.block_size
sample_rate = self.test_cfg.sample_rate
use_normalized_coord = self.test_cfg.use_normalized_coord
batch_size = self.test_cfg.batch_size * num_points
# patch_points is of shape [K*N, 3+C], patch_idxs is of shape [K*N]
patch_points, patch_idxs = self._sliding_patch_generation(
point, num_points, block_size, sample_rate, use_normalized_coord)
feats_dim = patch_points.shape[1]
seg_logits = [] # save patch predictions
for batch_idx in range(0, patch_points.shape[0], batch_size):
batch_points = patch_points[batch_idx:batch_idx + batch_size]
batch_points = batch_points.view(-1, num_points, feats_dim)
# batch_seg_logit is of shape [B, num_classes, N]
batch_seg_logit = self.encode_decode(batch_points,
[input_meta] * batch_size)
batch_seg_logit = batch_seg_logit.transpose(1, 2).contiguous()
seg_logits.append(batch_seg_logit.view(-1, self.num_classes))
# aggregate per-point logits by indexing sum and dividing count
seg_logits = torch.cat(seg_logits, dim=0) # [K*N, num_classes]
expand_patch_idxs = patch_idxs.unsqueeze(1).repeat(1, self.num_classes)
preds = point.new_zeros((point.shape[0], self.num_classes)).\
scatter_add_(dim=0, index=expand_patch_idxs, src=seg_logits)
count_mat = torch.bincount(patch_idxs)
preds = preds / count_mat[:, None]
# TODO: if rescale and voxelization segmentor
return preds.transpose(0, 1) # to [num_classes, K*N]
def whole_inference(self, points: Tensor, batch_input_metas: List[dict],
rescale: bool) -> Tensor:
"""Inference with full scene (one forward pass without sliding)."""
seg_logit = self.encode_decode(points, batch_input_metas)
# TODO: if rescale and voxelization segmentor
return seg_logit
def inference(self, points: Tensor, batch_input_metas: List[dict],
rescale: bool) -> Tensor:
"""Inference with slide/whole style.
Args:
points (Tensor): Input points of shape [B, N, 3+C].
batch_input_metas (List[dict]): Meta information of a batch of
samples.
rescale (bool): Whether transform to original number of points.
Will be used for voxelization based segmentors.
Returns:
Tensor: The output segmentation map.
"""
assert self.test_cfg.mode in ['slide', 'whole']
if self.test_cfg.mode == 'slide':
seg_logit = torch.stack([
self.slide_inference(point, input_meta, rescale)
for point, input_meta in zip(points, batch_input_metas)
], 0)
else:
seg_logit = self.whole_inference(points, batch_input_metas,
rescale)
return seg_logit
def predict(self,
batch_inputs_dict: dict,
batch_data_samples: SampleList,
rescale: bool = True) -> SampleList:
"""Simple test with single scene.
Args:
batch_inputs_dict (dict): Input sample dict which includes 'points'
and 'imgs' keys.
- points (List[Tensor]): Point cloud of each sample.
- imgs (Tensor, optional): Image tensor has shape (B, C, H, W).
batch_data_samples (List[:obj:`Det3DDataSample`]): The det3d data
samples. It usually includes information such as `metainfo` and
`gt_pts_seg`.
rescale (bool): Whether transform to original number of points.
Will be used for voxelization based segmentors.
Defaults to True.
Returns:
List[:obj:`Det3DDataSample`]: Segmentation results of the input
points. Each Det3DDataSample usually contains:
- ``pred_pts_seg`` (PointData): Prediction of 3D semantic
segmentation.
- ``pts_seg_logits`` (PointData): Predicted logits of 3D semantic
segmentation before normalization.
"""
# 3D segmentation requires per-point prediction, so it's impossible
# to use down-sampling to get a batch of scenes with same num_points
# therefore, we only support testing one scene every time
seg_logits_list = []
batch_input_metas = []
for data_sample in batch_data_samples:
batch_input_metas.append(data_sample.metainfo)
points = batch_inputs_dict['points']
for point, input_meta in zip(points, batch_input_metas):
seg_logits = self.inference(
point.unsqueeze(0), [input_meta], rescale)[0]
seg_logits_list.append(seg_logits)
return self.postprocess_result(seg_logits_list, batch_data_samples)
def _forward(self,
batch_inputs_dict: dict,
batch_data_samples: OptSampleList = None) -> Tensor:
"""Network forward process.
Args:
batch_inputs_dict (dict): Input sample dict which includes 'points'
and 'imgs' keys.
- points (List[Tensor]): Point cloud of each sample.
- imgs (Tensor, optional): Image tensor has shape (B, C, H, W).
batch_data_samples (List[:obj:`Det3DDataSample`]): The det3d data
samples. It usually includes information such as `metainfo` and
`gt_pts_seg`.
Returns:
Tensor: Forward output of model without any post-processes.
"""
points = torch.stack(batch_inputs_dict['points'])
x = self.extract_feat(points)
return self.decode_head.forward(x)