Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import os | |
import requests | |
import torch | |
from diffusers import StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler | |
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker | |
from diffusers.models import AutoencoderKL | |
from PIL import Image | |
from RealESRGAN import RealESRGAN | |
import cv2 | |
import numpy as np | |
from diffusers.models.attention_processor import AttnProcessor2_0 | |
import gradio as gr | |
# Constants | |
SD15_WEIGHTS = "weights" | |
CONTROLNET_CACHE = "controlnet-cache" | |
SCHEDULERS = { | |
"DDIM": DDIMScheduler, | |
"DPMSolverMultistep": DPMSolverMultistepScheduler, | |
"K_EULER_ANCESTRAL": EulerAncestralDiscreteScheduler, | |
"K_EULER": EulerDiscreteScheduler, | |
} | |
# Function to download files | |
def download_file(url, folder_path, filename): | |
if not os.path.exists(folder_path): | |
os.makedirs(folder_path) | |
file_path = os.path.join(folder_path, filename) | |
if os.path.isfile(file_path): | |
print(f"File already exists: {file_path}") | |
else: | |
response = requests.get(url, stream=True) | |
if response.status_code == 200: | |
with open(file_path, 'wb') as file: | |
for chunk in response.iter_content(chunk_size=1024): | |
file.write(chunk) | |
print(f"File successfully downloaded and saved: {file_path}") | |
else: | |
print(f"Error downloading the file. Status code: {response.status_code}") | |
# Download necessary models and files | |
def gradio_process_image(input_image, resolution, num_inference_steps, strength, hdr, guidance_scale): | |
prompt = "masterpiece, best quality, highres" | |
negative_prompt = "low quality, normal quality, ugly, blurry, blur, lowres, bad anatomy, bad hands, cropped, worst quality, verybadimagenegative_v1.3, JuggernautNegative-neg" | |
result = process_image(input_image, prompt, negative_prompt, resolution, num_inference_steps, guidance_scale, strength, hdr) | |
return result | |
# MODEL | |
download_file( | |
"https://huggingface.co/dantea1118/juggernaut_reborn/resolve/main/juggernaut_reborn.safetensors?download=true", | |
"models/models/Stable-diffusion", | |
"juggernaut_reborn.safetensors" | |
) | |
# UPSCALER | |
download_file( | |
"https://huggingface.co/ai-forever/Real-ESRGAN/resolve/main/RealESRGAN_x2.pth?download=true", | |
"models/upscalers/", | |
"RealESRGAN_x2.pth" | |
) | |
download_file( | |
"https://huggingface.co/ai-forever/Real-ESRGAN/resolve/main/RealESRGAN_x4.pth?download=true", | |
"models/upscalers/", | |
"RealESRGAN_x4.pth" | |
) | |
# NEGATIVE | |
download_file( | |
"https://huggingface.co/philz1337x/embeddings/resolve/main/verybadimagenegative_v1.3.pt?download=true", | |
"models/embeddings", | |
"verybadimagenegative_v1.3.pt" | |
) | |
download_file( | |
"https://huggingface.co/datasets/AddictiveFuture/sd-negative-embeddings/resolve/main/JuggernautNegative-neg.pt?download=true", | |
"models/embeddings", | |
"JuggernautNegative-neg.pt" | |
) | |
# LORA | |
download_file( | |
"https://huggingface.co/philz1337x/loras/resolve/main/SDXLrender_v2.0.safetensors?download=true", | |
"models/Lora", | |
"SDXLrender_v2.0.safetensors" | |
) | |
download_file( | |
"https://huggingface.co/philz1337x/loras/resolve/main/more_details.safetensors?download=true", | |
"models/Lora", | |
"more_details.safetensors" | |
) | |
# CONTROLNET | |
download_file( | |
"https://huggingface.co/lllyasviel/ControlNet-v1-1/resolve/main/control_v11f1e_sd15_tile.pth?download=true", | |
"models/ControlNet", | |
"control_v11f1e_sd15_tile.pth" | |
) | |
# VAE | |
download_file( | |
"https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.safetensors?download=true", | |
"models/VAE", | |
"vae-ft-mse-840000-ema-pruned.safetensors" | |
) | |
# Set up the device | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Load ControlNet model | |
controlnet = ControlNetModel.from_single_file( | |
"models/ControlNet/control_v11f1e_sd15_tile.pth", torch_dtype=torch.float16 | |
) | |
safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker") | |
# Load the Stable Diffusion pipeline with Juggernaut Reborn model | |
model_path = "models/models/Stable-diffusion/juggernaut_reborn.safetensors" | |
pipe = StableDiffusionControlNetImg2ImgPipeline.from_single_file( | |
model_path, | |
controlnet=controlnet, | |
torch_dtype=torch.float16, | |
use_safetensors=True, | |
safety_checker=safety_checker | |
) | |
# Load and set VAE | |
vae = AutoencoderKL.from_single_file( | |
"models/VAE/vae-ft-mse-840000-ema-pruned.safetensors", | |
torch_dtype=torch.float16 | |
) | |
pipe.vae = vae | |
# Load embeddings and LoRA models | |
pipe.load_textual_inversion("models/embeddings/verybadimagenegative_v1.3.pt") | |
pipe.load_textual_inversion("models/embeddings/JuggernautNegative-neg.pt") | |
pipe.load_lora_weights("models/Lora/SDXLrender_v2.0.safetensors") | |
pipe.fuse_lora(lora_scale=0.5) | |
pipe.load_lora_weights("models/Lora/more_details.safetensors") | |
# Set up the scheduler | |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) | |
# Move the pipeline to the device and enable memory efficient attention | |
pipe = pipe.to(device) | |
pipe.unet.set_attn_processor(AttnProcessor2_0()) | |
# Enable FreeU | |
pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.3, b2=1.4) | |
class LazyRealESRGAN: | |
def __init__(self, device, scale): | |
self.device = device | |
self.scale = scale | |
self.model = None | |
def load_model(self): | |
if self.model is None: | |
self.model = RealESRGAN(self.device, scale=self.scale) | |
self.model.load_weights(f'models/upscalers/RealESRGAN_x{self.scale}.pth', download=False) | |
def predict(self, img): | |
self.load_model() | |
return self.model.predict(img) | |
# Initialize the lazy models | |
lazy_realesrgan_x2 = LazyRealESRGAN(device, scale=2) | |
lazy_realesrgan_x4 = LazyRealESRGAN(device, scale=4) | |
def resize_and_upscale(input_image, resolution): | |
scale = 2 | |
if resolution == 2048: | |
init_w = 1024 | |
elif resolution == 2560: | |
init_w = 1280 | |
elif resolution == 3072: | |
init_w = 1536 | |
else: | |
init_w = 1024 | |
scale = 4 | |
input_image = input_image.convert("RGB") | |
W, H = input_image.size | |
k = float(init_w) / min(H, W) | |
H *= k | |
W *= k | |
H = int(round(H / 64.0)) * 64 | |
W = int(round(W / 64.0)) * 64 | |
img = input_image.resize((W, H), resample=Image.LANCZOS) | |
model = RealESRGAN(device, scale=scale) | |
model.load_weights(f'models/upscalers/RealESRGAN_x{scale}.pth', download=False) | |
img = model.predict(img) | |
if scale == 2: | |
img = lazy_realesrgan_x2.predict(img) | |
else: | |
img = lazy_realesrgan_x4.predict(img) | |
return img | |
def calculate_brightness_factors(hdr_intensity): | |
factors = [1.0] * 9 | |
if hdr_intensity > 0: | |
factors = [1.0 - 0.9 * hdr_intensity, 1.0 - 0.7 * hdr_intensity, 1.0 - 0.45 * hdr_intensity, | |
1.0 - 0.25 * hdr_intensity, 1.0, 1.0 + 0.2 * hdr_intensity, | |
1.0 + 0.4 * hdr_intensity, 1.0 + 0.6 * hdr_intensity, 1.0 + 0.8 * hdr_intensity] | |
return factors | |
def pil_to_cv(pil_image): | |
return cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR) | |
def adjust_brightness(cv_image, factor): | |
hsv_image = cv2.cvtColor(cv_image, cv2.COLOR_BGR2HSV) | |
h, s, v = cv2.split(hsv_image) | |
v = np.clip(v * factor, 0, 255).astype('uint8') | |
adjusted_hsv = cv2.merge([h, s, v]) | |
return cv2.cvtColor(adjusted_hsv, cv2.COLOR_HSV2BGR) | |
def create_hdr_effect(original_image, hdr): | |
cv_original = pil_to_cv(original_image) | |
brightness_factors = calculate_brightness_factors(hdr) | |
images = [adjust_brightness(cv_original, factor) for factor in brightness_factors] | |
merge_mertens = cv2.createMergeMertens() | |
hdr_image = merge_mertens.process(images) | |
hdr_image_8bit = np.clip(hdr_image * 255, 0, 255).astype('uint8') | |
hdr_image_pil = Image.fromarray(cv2.cvtColor(hdr_image_8bit, cv2.COLOR_BGR2RGB)) | |
return hdr_image_pil | |
def process_image(input_image, prompt, negative_prompt, resolution=2048, num_inference_steps=50, guidance_scale=3, strength=0.35, hdr=0): | |
condition_image = resize_and_upscale(input_image, resolution) | |
condition_image = create_hdr_effect(condition_image, hdr) | |
result = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
image=condition_image, | |
control_image=condition_image, | |
width=condition_image.size[0], | |
height=condition_image.size[1], | |
strength=strength, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
generator=torch.manual_seed(0), | |
).images[0] | |
return result | |
# Simple options | |
simple_options = [ | |
gr.Image(type="pil", label="Input Image"), | |
gr.Slider(minimum=2048, maximum=3072, step=512, value=2048, label="Resolution"), | |
gr.Slider(minimum=10, maximum=100, step=10, value=20, label="Inference Steps"), | |
gr.Slider(minimum=0.0, maximum=1.0, step=0.05, value=0.35, label="Strength"), | |
gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0, label="HDR"), | |
gr.Slider(minimum=1, maximum=10, step=0.1, value=3, label="Guidance Scale") | |
] | |
# Create the Gradio interface | |
iface = gr.Interface( | |
fn=gradio_process_image, | |
inputs=simple_options, | |
outputs=gr.Image(type="pil", label="Output Image"), | |
title="Image Processing with Stable Diffusion", | |
description="Upload an image and adjust the settings to process it using Stable Diffusion." | |
) | |
iface.launch() |