File size: 1,059 Bytes
c3a4f13
3e3ae52
7b0ded1
3e3ae52
b81291c
4e39734
b81291c
7b0ded1
a167da1
f87a413
3e3ae52
 
7b0ded1
f87a413
 
3e3ae52
7b0ded1
3e3ae52
7b0ded1
f87a413
 
 
7b0ded1
d4c4b8a
3e3ae52
7b0ded1
 
 
 
3e3ae52
 
 
 
7b0ded1
 
3e3ae52
7b0ded1
9e0e2ae
f87a413
3e3ae52
f87a413
665a8f9
3e3ae52
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import gradio as gr
import PIL.Image as Image

from ultralytics import ASSETS, YOLO

model = YOLO("https://huggingface.co/spaces/gpbhupinder/test/blob/main/model_-%2023%20june%202024%2019_22.pt")


def predict_image(img):
    """Predicts objects in an image using a YOLOv8 model."""
    results = model.predict(
        source=img,
        
        show_labels=True,
        show_conf=True,
        imgsz=640,

    )

    for r in results:
        im_array = r.plot()
        im = Image.fromarray(im_array[..., ::-1])

    return im





iface = gr.Interface(
    fn=predict_image,
    inputs=[
        gr.Image(type="pil", label="Upload Image"),
        # gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"),
        # gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"),
    ],
    outputs=gr.Image(type="pil", label="Result"),
    title="GP Wolf Classifier",
    description="Upload images for inference.",
    examples=[
        ["gp.jpg"],
        ["wolf.jpg"],
    ],
)

if __name__ == "__main__":
    iface.launch()