Spaces:
Sleeping
Sleeping
File size: 1,059 Bytes
c3a4f13 3e3ae52 7b0ded1 3e3ae52 b81291c 4e39734 b81291c 7b0ded1 a167da1 f87a413 3e3ae52 7b0ded1 f87a413 3e3ae52 7b0ded1 3e3ae52 7b0ded1 f87a413 7b0ded1 d4c4b8a 3e3ae52 7b0ded1 3e3ae52 7b0ded1 3e3ae52 7b0ded1 9e0e2ae f87a413 3e3ae52 f87a413 665a8f9 3e3ae52 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import gradio as gr
import PIL.Image as Image
from ultralytics import ASSETS, YOLO
model = YOLO("https://huggingface.co/spaces/gpbhupinder/test/blob/main/model_-%2023%20june%202024%2019_22.pt")
def predict_image(img):
"""Predicts objects in an image using a YOLOv8 model."""
results = model.predict(
source=img,
show_labels=True,
show_conf=True,
imgsz=640,
)
for r in results:
im_array = r.plot()
im = Image.fromarray(im_array[..., ::-1])
return im
iface = gr.Interface(
fn=predict_image,
inputs=[
gr.Image(type="pil", label="Upload Image"),
# gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"),
# gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"),
],
outputs=gr.Image(type="pil", label="Result"),
title="GP Wolf Classifier",
description="Upload images for inference.",
examples=[
["gp.jpg"],
["wolf.jpg"],
],
)
if __name__ == "__main__":
iface.launch() |