|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import absolute_import |
|
from __future__ import print_function |
|
from __future__ import division |
|
|
|
import numpy as np |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
|
|
|
|
def rot_mat_to_euler(rot_mats): |
|
|
|
|
|
|
|
sy = torch.sqrt(rot_mats[:, 0, 0] * rot_mats[:, 0, 0] + |
|
rot_mats[:, 1, 0] * rot_mats[:, 1, 0]) |
|
return torch.atan2(-rot_mats[:, 2, 0], sy) |
|
|
|
|
|
def find_dynamic_lmk_idx_and_bcoords(vertices, |
|
pose, |
|
dynamic_lmk_faces_idx, |
|
dynamic_lmk_b_coords, |
|
neck_kin_chain, |
|
dtype=torch.float32): |
|
''' Compute the faces, barycentric coordinates for the dynamic landmarks |
|
|
|
|
|
To do so, we first compute the rotation of the neck around the y-axis |
|
and then use a pre-computed look-up table to find the faces and the |
|
barycentric coordinates that will be used. |
|
|
|
Special thanks to Soubhik Sanyal (soubhik.sanyal@tuebingen.mpg.de) |
|
for providing the original TensorFlow implementation and for the LUT. |
|
|
|
Parameters |
|
---------- |
|
vertices: torch.tensor BxVx3, dtype = torch.float32 |
|
The tensor of input vertices |
|
pose: torch.tensor Bx(Jx3), dtype = torch.float32 |
|
The current pose of the body model |
|
dynamic_lmk_faces_idx: torch.tensor L, dtype = torch.long |
|
The look-up table from neck rotation to faces |
|
dynamic_lmk_b_coords: torch.tensor Lx3, dtype = torch.float32 |
|
The look-up table from neck rotation to barycentric coordinates |
|
neck_kin_chain: list |
|
A python list that contains the indices of the joints that form the |
|
kinematic chain of the neck. |
|
dtype: torch.dtype, optional |
|
|
|
Returns |
|
------- |
|
dyn_lmk_faces_idx: torch.tensor, dtype = torch.long |
|
A tensor of size BxL that contains the indices of the faces that |
|
will be used to compute the current dynamic landmarks. |
|
dyn_lmk_b_coords: torch.tensor, dtype = torch.float32 |
|
A tensor of size BxL that contains the indices of the faces that |
|
will be used to compute the current dynamic landmarks. |
|
''' |
|
|
|
batch_size = vertices.shape[0] |
|
|
|
aa_pose = torch.index_select(pose.view(batch_size, -1, 3), 1, |
|
neck_kin_chain) |
|
rot_mats = batch_rodrigues(aa_pose.view(-1, 3), |
|
dtype=dtype).view(batch_size, -1, 3, 3) |
|
|
|
rel_rot_mat = torch.eye(3, device=vertices.device, |
|
dtype=dtype).unsqueeze_(dim=0).repeat( |
|
batch_size, 1, 1) |
|
for idx in range(len(neck_kin_chain)): |
|
rel_rot_mat = torch.bmm(rot_mats[:, idx], rel_rot_mat) |
|
|
|
y_rot_angle = torch.round( |
|
torch.clamp(-rot_mat_to_euler(rel_rot_mat) * 180.0 / np.pi, |
|
max=39)).to(dtype=torch.long) |
|
neg_mask = y_rot_angle.lt(0).to(dtype=torch.long) |
|
mask = y_rot_angle.lt(-39).to(dtype=torch.long) |
|
neg_vals = mask * 78 + (1 - mask) * (39 - y_rot_angle) |
|
y_rot_angle = (neg_mask * neg_vals + (1 - neg_mask) * y_rot_angle) |
|
|
|
dyn_lmk_faces_idx = torch.index_select(dynamic_lmk_faces_idx, 0, |
|
y_rot_angle) |
|
dyn_lmk_b_coords = torch.index_select(dynamic_lmk_b_coords, 0, y_rot_angle) |
|
|
|
return dyn_lmk_faces_idx, dyn_lmk_b_coords |
|
|
|
|
|
def vertices2landmarks(vertices, faces, lmk_faces_idx, lmk_bary_coords): |
|
''' Calculates landmarks by barycentric interpolation |
|
|
|
Parameters |
|
---------- |
|
vertices: torch.tensor BxVx3, dtype = torch.float32 |
|
The tensor of input vertices |
|
faces: torch.tensor Fx3, dtype = torch.long |
|
The faces of the mesh |
|
lmk_faces_idx: torch.tensor L, dtype = torch.long |
|
The tensor with the indices of the faces used to calculate the |
|
landmarks. |
|
lmk_bary_coords: torch.tensor Lx3, dtype = torch.float32 |
|
The tensor of barycentric coordinates that are used to interpolate |
|
the landmarks |
|
|
|
Returns |
|
------- |
|
landmarks: torch.tensor BxLx3, dtype = torch.float32 |
|
The coordinates of the landmarks for each mesh in the batch |
|
''' |
|
|
|
|
|
batch_size, num_verts = vertices.shape[:2] |
|
device = vertices.device |
|
|
|
lmk_faces = torch.index_select(faces, 0, lmk_faces_idx.view(-1)).view( |
|
batch_size, -1, 3) |
|
|
|
lmk_faces += torch.arange(batch_size, dtype=torch.long, |
|
device=device).view(-1, 1, 1) * num_verts |
|
|
|
lmk_vertices = vertices.view(-1, 3)[lmk_faces].view(batch_size, -1, 3, 3) |
|
|
|
landmarks = torch.einsum('blfi,blf->bli', [lmk_vertices, lmk_bary_coords]) |
|
return landmarks |
|
|
|
|
|
def joints2bones(joints, parents): |
|
''' Decompose joints location to bone length and direction. |
|
|
|
Parameters |
|
---------- |
|
joints: torch.tensor Bx24x3 |
|
''' |
|
assert joints.shape[1] == parents.shape[0] |
|
bone_dirs = torch.zeros_like(joints) |
|
bone_lens = torch.zeros_like(joints[:, :, :1]) |
|
|
|
for c_id in range(parents.shape[0]): |
|
p_id = parents[c_id] |
|
if p_id == -1: |
|
|
|
bone_dirs[:, c_id] = joints[:, c_id] |
|
else: |
|
|
|
|
|
diff = joints[:, c_id] - joints[:, p_id] |
|
length = torch.norm(diff, dim=1, keepdim=True) + 1e-8 |
|
direct = diff / length |
|
|
|
bone_dirs[:, c_id] = direct |
|
bone_lens[:, c_id] = length |
|
|
|
return bone_dirs, bone_lens |
|
|
|
|
|
def bones2joints(bone_dirs, bone_lens, parents): |
|
''' Recover bone length and direction to joints location. |
|
|
|
Parameters |
|
---------- |
|
bone_dirs: torch.tensor 1x24x3 |
|
bone_lens: torch.tensor Bx24x1 |
|
''' |
|
batch_size = bone_lens.shape[0] |
|
joints = torch.zeros_like(bone_dirs).expand(batch_size, 24, 3) |
|
|
|
for c_id in range(parents.shape[0]): |
|
p_id = parents[c_id] |
|
if p_id == -1: |
|
|
|
joints[:, c_id] = bone_dirs[:, c_id] |
|
else: |
|
|
|
joints[:, c_id] = joints[:, p_id] + \ |
|
bone_dirs[:, c_id] * bone_lens[:, c_id] |
|
|
|
return joints |
|
|
|
|
|
def lbs(betas, |
|
pose, |
|
v_template, |
|
shapedirs, |
|
posedirs, |
|
J_regressor, |
|
J_regressor_h36m, |
|
parents, |
|
lbs_weights, |
|
pose2rot=True, |
|
dtype=torch.float32): |
|
''' Performs Linear Blend Skinning with the given shape and pose parameters |
|
|
|
Parameters |
|
---------- |
|
betas : torch.tensor BxNB |
|
The tensor of shape parameters |
|
pose : torch.tensor Bx(J + 1) * 3 |
|
The pose parameters in axis-angle format |
|
v_template torch.tensor BxVx3 |
|
The template mesh that will be deformed |
|
shapedirs : torch.tensor 1xNB |
|
The tensor of PCA shape displacements |
|
posedirs : torch.tensor Px(V * 3) |
|
The pose PCA coefficients |
|
J_regressor : torch.tensor JxV |
|
The regressor array that is used to calculate the joints from |
|
the position of the vertices |
|
parents: torch.tensor J |
|
The array that describes the kinematic tree for the model |
|
lbs_weights: torch.tensor N x V x (J + 1) |
|
The linear blend skinning weights that represent how much the |
|
rotation matrix of each part affects each vertex |
|
pose2rot: bool, optional |
|
Flag on whether to convert the input pose tensor to rotation |
|
matrices. The default value is True. If False, then the pose tensor |
|
should already contain rotation matrices and have a size of |
|
Bx(J + 1)x9 |
|
dtype: torch.dtype, optional |
|
|
|
Returns |
|
------- |
|
verts: torch.tensor BxVx3 |
|
The vertices of the mesh after applying the shape and pose |
|
displacements. |
|
joints: torch.tensor BxJx3 |
|
The joints of the model |
|
rot_mats: torch.tensor BxJx3x3 |
|
The rotation matrics of each joints |
|
''' |
|
batch_size = max(betas.shape[0], pose.shape[0]) |
|
device = betas.device |
|
|
|
|
|
v_shaped = v_template + blend_shapes(betas, shapedirs) |
|
|
|
|
|
|
|
J = vertices2joints(J_regressor, v_shaped) |
|
|
|
|
|
|
|
ident = torch.eye(3, dtype=dtype, device=device) |
|
if pose2rot: |
|
if pose.numel() == batch_size * 24 * 4: |
|
rot_mats = quat_to_rotmat(pose.reshape(batch_size * 24, |
|
4)).reshape( |
|
batch_size, 24, 3, 3) |
|
else: |
|
rot_mats = batch_rodrigues(pose.view(-1, 3), dtype=dtype).view( |
|
[batch_size, -1, 3, 3]) |
|
|
|
pose_feature = (rot_mats[:, 1:, :, :] - ident).view([batch_size, -1]) |
|
|
|
pose_offsets = torch.matmul(pose_feature, posedirs) \ |
|
.view(batch_size, -1, 3) |
|
else: |
|
pose_feature = pose[:, 1:].view(batch_size, -1, 3, 3) - ident |
|
rot_mats = pose.view(batch_size, -1, 3, 3) |
|
|
|
pose_offsets = torch.matmul(pose_feature.view(batch_size, -1), |
|
posedirs).view(batch_size, -1, 3) |
|
|
|
v_posed = pose_offsets + v_shaped |
|
|
|
J_transformed, A = batch_rigid_transform(rot_mats, |
|
J, |
|
parents[:24], |
|
dtype=dtype) |
|
|
|
|
|
|
|
W = lbs_weights.unsqueeze(dim=0).expand([batch_size, -1, -1]) |
|
|
|
num_joints = J_regressor.shape[0] |
|
T = torch.matmul(W, A.view(batch_size, num_joints, 16)) \ |
|
.view(batch_size, -1, 4, 4) |
|
|
|
homogen_coord = torch.ones([batch_size, v_posed.shape[1], 1], |
|
dtype=dtype, |
|
device=device) |
|
v_posed_homo = torch.cat([v_posed, homogen_coord], dim=2) |
|
v_homo = torch.matmul(T, torch.unsqueeze(v_posed_homo, dim=-1)) |
|
|
|
verts = v_homo[:, :, :3, 0] |
|
|
|
J_from_verts = vertices2joints(J_regressor_h36m, verts) |
|
|
|
return verts, J_transformed, rot_mats, J_from_verts |
|
|
|
|
|
def hybrik(betas, |
|
global_orient, |
|
pose_skeleton, |
|
phis, |
|
v_template, |
|
shapedirs, |
|
posedirs, |
|
J_regressor, |
|
J_regressor_h36m, |
|
parents, |
|
children, |
|
lbs_weights, |
|
dtype=torch.float32, |
|
train=False, |
|
leaf_thetas=None): |
|
''' Performs Linear Blend Skinning with the given shape and skeleton joints |
|
|
|
Parameters |
|
---------- |
|
betas : torch.tensor BxNB |
|
The tensor of shape parameters |
|
global_orient : torch.tensor Bx3 |
|
The tensor of global orientation |
|
pose_skeleton : torch.tensor BxJ*3 |
|
The pose skeleton in (X, Y, Z) format |
|
phis : torch.tensor BxJx2 |
|
The rotation on bone axis parameters |
|
v_template torch.tensor BxVx3 |
|
The template mesh that will be deformed |
|
shapedirs : torch.tensor 1xNB |
|
The tensor of PCA shape displacements |
|
posedirs : torch.tensor Px(V * 3) |
|
The pose PCA coefficients |
|
J_regressor : torch.tensor JxV |
|
The regressor array that is used to calculate the joints from |
|
the position of the vertices |
|
J_regressor_h36m : torch.tensor 17xV |
|
The regressor array that is used to calculate the 17 Human3.6M joints from |
|
the position of the vertices |
|
parents: torch.tensor J |
|
The array that describes the kinematic parents for the model |
|
children: dict |
|
The dictionary that describes the kinematic chidrens for the model |
|
lbs_weights: torch.tensor N x V x (J + 1) |
|
The linear blend skinning weights that represent how much the |
|
rotation matrix of each part affects each vertex |
|
dtype: torch.dtype, optional |
|
|
|
Returns |
|
------- |
|
verts: torch.tensor BxVx3 |
|
The vertices of the mesh after applying the shape and pose |
|
displacements. |
|
joints: torch.tensor BxJx3 |
|
The joints of the model |
|
rot_mats: torch.tensor BxJx3x3 |
|
The rotation matrics of each joints |
|
''' |
|
batch_size = max(betas.shape[0], pose_skeleton.shape[0]) |
|
device = betas.device |
|
|
|
|
|
v_shaped = v_template + blend_shapes(betas, shapedirs) |
|
|
|
|
|
|
|
if leaf_thetas is not None: |
|
rest_J = vertices2joints(J_regressor, v_shaped) |
|
else: |
|
rest_J = torch.zeros((v_shaped.shape[0], 29, 3), |
|
dtype=dtype, |
|
device=device) |
|
rest_J[:, :24] = vertices2joints(J_regressor, v_shaped) |
|
|
|
leaf_number = [411, 2445, 5905, 3216, 6617] |
|
leaf_vertices = v_shaped[:, leaf_number].clone() |
|
rest_J[:, 24:] = leaf_vertices |
|
|
|
|
|
if train: |
|
rot_mats, rotate_rest_pose = batch_inverse_kinematics_transform( |
|
pose_skeleton, |
|
global_orient, |
|
phis, |
|
rest_J.clone(), |
|
children, |
|
parents, |
|
dtype=dtype, |
|
train=train, |
|
leaf_thetas=leaf_thetas) |
|
else: |
|
rot_mats, rotate_rest_pose = batch_inverse_kinematics_transform_optimized( |
|
pose_skeleton, |
|
phis, |
|
rest_J.clone(), |
|
children, |
|
parents, |
|
dtype=dtype, |
|
train=train, |
|
leaf_thetas=leaf_thetas) |
|
|
|
test_joints = True |
|
if test_joints: |
|
J_transformed, A = batch_rigid_transform(rot_mats, |
|
rest_J[:, :24].clone(), |
|
parents[:24], |
|
dtype=dtype) |
|
else: |
|
J_transformed = None |
|
|
|
|
|
|
|
|
|
ident = torch.eye(3, dtype=dtype, device=device) |
|
pose_feature = (rot_mats[:, 1:] - ident).view([batch_size, -1]) |
|
pose_offsets = torch.matmul(pose_feature, posedirs) \ |
|
.view(batch_size, -1, 3) |
|
|
|
v_posed = pose_offsets + v_shaped |
|
|
|
|
|
|
|
W = lbs_weights.unsqueeze(dim=0).expand([batch_size, -1, -1]) |
|
|
|
num_joints = J_regressor.shape[0] |
|
T = torch.matmul(W, A.view(batch_size, num_joints, 16)) \ |
|
.view(batch_size, -1, 4, 4) |
|
|
|
homogen_coord = torch.ones([batch_size, v_posed.shape[1], 1], |
|
dtype=dtype, |
|
device=device) |
|
v_posed_homo = torch.cat([v_posed, homogen_coord], dim=2) |
|
v_homo = torch.matmul(T, torch.unsqueeze(v_posed_homo, dim=-1)) |
|
|
|
verts = v_homo[:, :, :3, 0] |
|
if J_regressor_h36m is not None: |
|
J_from_verts_h36m = vertices2joints(J_regressor_h36m, verts) |
|
else: |
|
J_from_verts_h36m = None |
|
|
|
return verts, J_transformed, rot_mats, J_from_verts_h36m |
|
|
|
|
|
def vertices2joints(J_regressor, vertices): |
|
''' Calculates the 3D joint locations from the vertices |
|
|
|
Parameters |
|
---------- |
|
J_regressor : torch.tensor JxV |
|
The regressor array that is used to calculate the joints from the |
|
position of the vertices |
|
vertices : torch.tensor BxVx3 |
|
The tensor of mesh vertices |
|
|
|
Returns |
|
------- |
|
torch.tensor BxJx3 |
|
The location of the joints |
|
''' |
|
|
|
return torch.einsum('bik,ji->bjk', [vertices, J_regressor]) |
|
|
|
|
|
def blend_shapes(betas, shape_disps): |
|
''' Calculates the per vertex displacement due to the blend shapes |
|
|
|
|
|
Parameters |
|
---------- |
|
betas : torch.tensor Bx(num_betas) |
|
Blend shape coefficients |
|
shape_disps: torch.tensor Vx3x(num_betas) |
|
Blend shapes |
|
|
|
Returns |
|
------- |
|
torch.tensor BxVx3 |
|
The per-vertex displacement due to shape deformation |
|
''' |
|
|
|
|
|
|
|
|
|
blend_shape = torch.einsum('bl,mkl->bmk', [betas, shape_disps]) |
|
return blend_shape |
|
|
|
|
|
def batch_rodrigues(rot_vecs, epsilon=1e-8, dtype=torch.float32): |
|
''' Calculates the rotation matrices for a batch of rotation vectors |
|
Parameters |
|
---------- |
|
rot_vecs: torch.tensor Nx3 |
|
array of N axis-angle vectors |
|
Returns |
|
------- |
|
R: torch.tensor Nx3x3 |
|
The rotation matrices for the given axis-angle parameters |
|
''' |
|
|
|
batch_size = rot_vecs.shape[0] |
|
device = rot_vecs.device |
|
|
|
angle = torch.norm(rot_vecs + 1e-8, dim=1, keepdim=True) |
|
rot_dir = rot_vecs / angle |
|
|
|
cos = torch.unsqueeze(torch.cos(angle), dim=1) |
|
sin = torch.unsqueeze(torch.sin(angle), dim=1) |
|
|
|
|
|
rx, ry, rz = torch.split(rot_dir, 1, dim=1) |
|
K = torch.zeros((batch_size, 3, 3), dtype=dtype, device=device) |
|
|
|
zeros = torch.zeros((batch_size, 1), dtype=dtype, device=device) |
|
K = torch.cat([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], dim=1) \ |
|
.view((batch_size, 3, 3)) |
|
|
|
ident = torch.eye(3, dtype=dtype, device=device).unsqueeze(dim=0) |
|
rot_mat = ident + sin * K + (1 - cos) * torch.bmm(K, K) |
|
return rot_mat |
|
|
|
|
|
def transform_mat(R, t): |
|
''' Creates a batch of transformation matrices |
|
Args: |
|
- R: Bx3x3 array of a batch of rotation matrices |
|
- t: Bx3x1 array of a batch of translation vectors |
|
Returns: |
|
- T: Bx4x4 Transformation matrix |
|
''' |
|
|
|
return torch.cat([F.pad(R, [0, 0, 0, 1]), |
|
F.pad(t, [0, 0, 0, 1], value=1)], |
|
dim=2) |
|
|
|
|
|
def batch_rigid_transform(rot_mats, joints, parents, dtype=torch.float32): |
|
""" |
|
Applies a batch of rigid transformations to the joints |
|
|
|
Parameters |
|
---------- |
|
rot_mats : torch.tensor BxNx3x3 |
|
Tensor of rotation matrices |
|
joints : torch.tensor BxNx3 |
|
Locations of joints. (Template Pose) |
|
parents : torch.tensor BxN |
|
The kinematic tree of each object |
|
dtype : torch.dtype, optional: |
|
The data type of the created tensors, the default is torch.float32 |
|
|
|
Returns |
|
------- |
|
posed_joints : torch.tensor BxNx3 |
|
The locations of the joints after applying the pose rotations |
|
rel_transforms : torch.tensor BxNx4x4 |
|
The relative (with respect to the root joint) rigid transformations |
|
for all the joints |
|
""" |
|
joints = torch.unsqueeze(joints, dim=-1) |
|
rel_joints = joints.clone() |
|
rel_joints[:, 1:] -= joints[:, parents[1:]].clone() |
|
|
|
|
|
transforms_mat = transform_mat(rot_mats.reshape(-1, 3, 3), |
|
rel_joints.reshape(-1, 3, 1)).reshape( |
|
-1, joints.shape[1], 4, 4) |
|
|
|
transform_chain = [transforms_mat[:, 0]] |
|
for i in range(1, parents.shape[0]): |
|
|
|
|
|
|
|
curr_res = torch.matmul(transform_chain[parents[i]], transforms_mat[:, |
|
i]) |
|
transform_chain.append(curr_res) |
|
|
|
|
|
transforms = torch.stack(transform_chain, dim=1) |
|
|
|
|
|
posed_joints = transforms[:, :, :3, 3] |
|
|
|
|
|
posed_joints = transforms[:, :, :3, 3] |
|
|
|
joints_homogen = F.pad(joints, [0, 0, 0, 1]) |
|
|
|
rel_transforms = transforms - F.pad( |
|
torch.matmul(transforms, joints_homogen), [3, 0, 0, 0, 0, 0, 0, 0]) |
|
|
|
return posed_joints, rel_transforms |
|
|
|
|
|
def batch_inverse_kinematics_transform(pose_skeleton, |
|
global_orient, |
|
phis, |
|
rest_pose, |
|
children, |
|
parents, |
|
dtype=torch.float32, |
|
train=False, |
|
leaf_thetas=None): |
|
""" |
|
Applies a batch of inverse kinematics transfoirm to the joints |
|
|
|
Parameters |
|
---------- |
|
pose_skeleton : torch.tensor BxNx3 |
|
Locations of estimated pose skeleton. |
|
global_orient : torch.tensor Bx1x3x3 |
|
Tensor of global rotation matrices |
|
phis : torch.tensor BxNx2 |
|
The rotation on bone axis parameters |
|
rest_pose : torch.tensor Bx(N+1)x3 |
|
Locations of rest_pose. (Template Pose) |
|
children: dict |
|
The dictionary that describes the kinematic chidrens for the model |
|
parents : torch.tensor Bx(N+1) |
|
The kinematic tree of each object |
|
dtype : torch.dtype, optional: |
|
The data type of the created tensors, the default is torch.float32 |
|
|
|
Returns |
|
------- |
|
rot_mats: torch.tensor Bx(N+1)x3x3 |
|
The rotation matrics of each joints |
|
rel_transforms : torch.tensor Bx(N+1)x4x4 |
|
The relative (with respect to the root joint) rigid transformations |
|
for all the joints |
|
""" |
|
batch_size = pose_skeleton.shape[0] |
|
device = pose_skeleton.device |
|
|
|
rel_rest_pose = rest_pose.clone() |
|
rel_rest_pose[:, 1:] -= rest_pose[:, parents[1:]].clone() |
|
rel_rest_pose = torch.unsqueeze(rel_rest_pose, dim=-1) |
|
|
|
|
|
rotate_rest_pose = torch.zeros_like(rel_rest_pose) |
|
|
|
rotate_rest_pose[:, 0] = rel_rest_pose[:, 0] |
|
|
|
rel_pose_skeleton = torch.unsqueeze(pose_skeleton.clone(), dim=-1).detach() |
|
rel_pose_skeleton[:, 1:] = rel_pose_skeleton[:, 1:] - \ |
|
rel_pose_skeleton[:, parents[1:]].clone() |
|
rel_pose_skeleton[:, 0] = rel_rest_pose[:, 0] |
|
|
|
|
|
final_pose_skeleton = torch.unsqueeze(pose_skeleton.clone(), dim=-1) |
|
final_pose_skeleton = final_pose_skeleton - \ |
|
final_pose_skeleton[:, 0:1] + rel_rest_pose[:, 0:1] |
|
|
|
rel_rest_pose = rel_rest_pose |
|
rel_pose_skeleton = rel_pose_skeleton |
|
final_pose_skeleton = final_pose_skeleton |
|
rotate_rest_pose = rotate_rest_pose |
|
|
|
assert phis.dim() == 3 |
|
phis = phis / (torch.norm(phis, dim=2, keepdim=True) + 1e-8) |
|
|
|
|
|
if train: |
|
global_orient_mat = batch_get_pelvis_orient(rel_pose_skeleton.clone(), |
|
rel_rest_pose.clone(), |
|
parents, children, dtype) |
|
else: |
|
global_orient_mat = batch_get_pelvis_orient_svd( |
|
rel_pose_skeleton.clone(), rel_rest_pose.clone(), parents, |
|
children, dtype) |
|
|
|
rot_mat_chain = [global_orient_mat] |
|
rot_mat_local = [global_orient_mat] |
|
|
|
if leaf_thetas is not None: |
|
leaf_cnt = 0 |
|
leaf_rot_mats = leaf_thetas.view([batch_size, 5, 3, 3]) |
|
|
|
for i in range(1, parents.shape[0]): |
|
if children[i] == -1: |
|
|
|
if leaf_thetas is not None: |
|
rot_mat = leaf_rot_mats[:, leaf_cnt, :, :] |
|
leaf_cnt += 1 |
|
|
|
rotate_rest_pose[:, i] = rotate_rest_pose[:, parents[ |
|
i]] + torch.matmul(rot_mat_chain[parents[i]], |
|
rel_rest_pose[:, i]) |
|
|
|
rot_mat_chain.append( |
|
torch.matmul(rot_mat_chain[parents[i]], rot_mat)) |
|
rot_mat_local.append(rot_mat) |
|
elif children[i] == -3: |
|
|
|
rotate_rest_pose[:, |
|
i] = rotate_rest_pose[:, |
|
parents[i]] + torch.matmul( |
|
rot_mat_chain[ |
|
parents[i]], |
|
rel_rest_pose[:, i]) |
|
|
|
spine_child = [] |
|
for c in range(1, parents.shape[0]): |
|
if parents[c] == i and c not in spine_child: |
|
spine_child.append(c) |
|
|
|
|
|
spine_child = [] |
|
for c in range(1, parents.shape[0]): |
|
if parents[c] == i and c not in spine_child: |
|
spine_child.append(c) |
|
|
|
children_final_loc = [] |
|
children_rest_loc = [] |
|
for c in spine_child: |
|
temp = final_pose_skeleton[:, c] - rotate_rest_pose[:, i] |
|
children_final_loc.append(temp) |
|
|
|
children_rest_loc.append(rel_rest_pose[:, c].clone()) |
|
|
|
rot_mat = batch_get_3children_orient_svd(children_final_loc, |
|
children_rest_loc, |
|
rot_mat_chain[parents[i]], |
|
spine_child, dtype) |
|
|
|
rot_mat_chain.append( |
|
torch.matmul(rot_mat_chain[parents[i]], rot_mat)) |
|
rot_mat_local.append(rot_mat) |
|
else: |
|
|
|
rotate_rest_pose[:, |
|
i] = rotate_rest_pose[:, |
|
parents[i]] + torch.matmul( |
|
rot_mat_chain[ |
|
parents[i]], |
|
rel_rest_pose[:, i]) |
|
|
|
child_final_loc = final_pose_skeleton[:, children[ |
|
i]] - rotate_rest_pose[:, i] |
|
|
|
if not train: |
|
orig_vec = rel_pose_skeleton[:, children[i]] |
|
template_vec = rel_rest_pose[:, children[i]] |
|
norm_t = torch.norm(template_vec, dim=1, keepdim=True) |
|
orig_vec = orig_vec * norm_t / \ |
|
torch.norm(orig_vec, dim=1, keepdim=True) |
|
|
|
diff = torch.norm(child_final_loc - orig_vec, |
|
dim=1, |
|
keepdim=True) |
|
big_diff_idx = torch.where(diff > 15 / 1000)[0] |
|
|
|
child_final_loc[big_diff_idx] = orig_vec[big_diff_idx] |
|
|
|
child_final_loc = torch.matmul( |
|
rot_mat_chain[parents[i]].transpose(1, 2), child_final_loc) |
|
|
|
child_rest_loc = rel_rest_pose[:, children[i]] |
|
|
|
child_final_norm = torch.norm(child_final_loc, dim=1, keepdim=True) |
|
child_rest_norm = torch.norm(child_rest_loc, dim=1, keepdim=True) |
|
|
|
child_final_norm = torch.norm(child_final_loc, dim=1, keepdim=True) |
|
|
|
|
|
axis = torch.cross(child_rest_loc, child_final_loc, dim=1) |
|
axis_norm = torch.norm(axis, dim=1, keepdim=True) |
|
|
|
|
|
cos = torch.sum( |
|
child_rest_loc * child_final_loc, dim=1, |
|
keepdim=True) / (child_rest_norm * child_final_norm + 1e-8) |
|
sin = axis_norm / (child_rest_norm * child_final_norm + 1e-8) |
|
|
|
|
|
axis = axis / (axis_norm + 1e-8) |
|
|
|
|
|
|
|
rx, ry, rz = torch.split(axis, 1, dim=1) |
|
zeros = torch.zeros((batch_size, 1, 1), dtype=dtype, device=device) |
|
|
|
K = torch.cat([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], dim=1) \ |
|
.view((batch_size, 3, 3)) |
|
ident = torch.eye(3, dtype=dtype, device=device).unsqueeze(dim=0) |
|
rot_mat_loc = ident + sin * K + (1 - cos) * torch.bmm(K, K) |
|
|
|
|
|
|
|
spin_axis = child_rest_loc / child_rest_norm |
|
|
|
rx, ry, rz = torch.split(spin_axis, 1, dim=1) |
|
zeros = torch.zeros((batch_size, 1, 1), dtype=dtype, device=device) |
|
K = torch.cat([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], dim=1) \ |
|
.view((batch_size, 3, 3)) |
|
ident = torch.eye(3, dtype=dtype, device=device).unsqueeze(dim=0) |
|
|
|
cos, sin = torch.split(phis[:, i - 1], 1, dim=1) |
|
cos = torch.unsqueeze(cos, dim=2) |
|
sin = torch.unsqueeze(sin, dim=2) |
|
rot_mat_spin = ident + sin * K + (1 - cos) * torch.bmm(K, K) |
|
rot_mat = torch.matmul(rot_mat_loc, rot_mat_spin) |
|
|
|
rot_mat_chain.append( |
|
torch.matmul(rot_mat_chain[parents[i]], rot_mat)) |
|
rot_mat_local.append(rot_mat) |
|
|
|
|
|
rot_mats = torch.stack(rot_mat_local, dim=1) |
|
|
|
return rot_mats, rotate_rest_pose.squeeze(-1) |
|
|
|
|
|
def batch_inverse_kinematics_transform_optimized(pose_skeleton, |
|
phis, |
|
rest_pose, |
|
children, |
|
parents, |
|
dtype=torch.float32, |
|
train=False, |
|
leaf_thetas=None): |
|
""" |
|
Applies a batch of inverse kinematics transfoirm to the joints |
|
|
|
Parameters |
|
---------- |
|
pose_skeleton : torch.tensor BxNx3 |
|
Locations of estimated pose skeleton. |
|
global_orient : torch.tensor Bx1x3x3 |
|
Tensor of global rotation matrices |
|
phis : torch.tensor BxNx2 |
|
The rotation on bone axis parameters |
|
rest_pose : torch.tensor Bx(N+1)x3 |
|
Locations of rest_pose. (Template Pose) |
|
children: dict |
|
The dictionary that describes the kinematic chidrens for the model |
|
parents : torch.tensor Bx(N+1) |
|
The kinematic tree of each object |
|
dtype : torch.dtype, optional: |
|
The data type of the created tensors, the default is torch.float32 |
|
|
|
Returns |
|
------- |
|
rot_mats: torch.tensor Bx(N+1)x3x3 |
|
The rotation matrics of each joints |
|
rel_transforms : torch.tensor Bx(N+1)x4x4 |
|
The relative (with respect to the root joint) rigid transformations |
|
for all the joints |
|
""" |
|
batch_size = pose_skeleton.shape[0] |
|
device = pose_skeleton.device |
|
|
|
rel_rest_pose = rest_pose.clone() |
|
rel_rest_pose[:, 1:] -= rest_pose[:, parents[1:]].clone() |
|
rel_rest_pose = torch.unsqueeze(rel_rest_pose, dim=-1) |
|
|
|
|
|
rotate_rest_pose = torch.zeros_like(rel_rest_pose) |
|
|
|
rotate_rest_pose[:, 0] = rel_rest_pose[:, 0] |
|
|
|
rel_pose_skeleton = torch.unsqueeze(pose_skeleton.clone(), dim=-1).detach() |
|
rel_pose_skeleton[:, 1:] = rel_pose_skeleton[:, 1:] - \ |
|
rel_pose_skeleton[:, parents[1:]].clone() |
|
rel_pose_skeleton[:, 0] = rel_rest_pose[:, 0] |
|
|
|
|
|
final_pose_skeleton = torch.unsqueeze(pose_skeleton.clone(), dim=-1) |
|
final_pose_skeleton = final_pose_skeleton - \ |
|
final_pose_skeleton[:, [0]] + rel_rest_pose[:, [0]] |
|
|
|
|
|
phis = phis / (torch.norm(phis, dim=2, keepdim=True) + 1e-8) |
|
|
|
|
|
if train: |
|
global_orient_mat = batch_get_pelvis_orient(rel_pose_skeleton.clone(), |
|
rel_rest_pose.clone(), |
|
parents, children, dtype) |
|
else: |
|
global_orient_mat = batch_get_pelvis_orient_svd( |
|
rel_pose_skeleton.clone(), rel_rest_pose.clone(), parents, |
|
children, dtype) |
|
|
|
|
|
|
|
|
|
rot_mat_chain = torch.zeros((batch_size, 24, 3, 3), |
|
dtype=torch.float32, |
|
device=pose_skeleton.device) |
|
rot_mat_local = torch.zeros_like(rot_mat_chain) |
|
rot_mat_chain[:, 0] = global_orient_mat |
|
rot_mat_local[:, 0] = global_orient_mat |
|
|
|
|
|
if leaf_thetas is not None: |
|
|
|
leaf_rot_mats = leaf_thetas.view([batch_size, 5, 3, 3]) |
|
|
|
idx_levs = [ |
|
[0], |
|
[3], |
|
[6], |
|
[9], |
|
[1, 2, 12, 13, 14], |
|
[4, 5, 15, 16, 17], |
|
[7, 8, 18, 19], |
|
[10, 11, 20, 21], |
|
[22, 23], |
|
[24, 25, 26, 27, 28] |
|
] |
|
if leaf_thetas is not None: |
|
idx_levs = idx_levs[:-1] |
|
|
|
for idx_lev in range(1, len(idx_levs)): |
|
indices = idx_levs[idx_lev] |
|
if idx_lev == len(idx_levs) - 1: |
|
|
|
if leaf_thetas is not None: |
|
rot_mat = leaf_rot_mats[:, :, :, :] |
|
parent_indices = [15, 22, 23, 10, 11] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rot_mat_local[:, parent_indices] = rot_mat |
|
|
|
if (torch.det(rot_mat) < 0).any(): |
|
|
|
|
|
|
|
|
|
|
|
print('Something wrong.') |
|
elif idx_lev == 3: |
|
|
|
idx = indices[0] |
|
rotate_rest_pose[:, idx] = rotate_rest_pose[:, parents[ |
|
idx]] + torch.matmul(rot_mat_chain[:, parents[idx]], |
|
rel_rest_pose[:, idx]) |
|
|
|
|
|
spine_child = [12, 13, 14] |
|
|
|
|
|
|
|
|
|
children_final_loc = [] |
|
children_rest_loc = [] |
|
for c in spine_child: |
|
temp = final_pose_skeleton[:, c] - rotate_rest_pose[:, idx] |
|
children_final_loc.append(temp) |
|
|
|
children_rest_loc.append(rel_rest_pose[:, c].clone()) |
|
|
|
rot_mat = batch_get_3children_orient_svd( |
|
children_final_loc, children_rest_loc, |
|
rot_mat_chain[:, parents[idx]], spine_child, dtype) |
|
|
|
rot_mat_chain[:, |
|
idx] = torch.matmul(rot_mat_chain[:, parents[idx]], |
|
rot_mat) |
|
|
|
rot_mat_local[:, idx] = rot_mat |
|
|
|
if (torch.det(rot_mat) < 0).any(): |
|
print(1) |
|
else: |
|
len_indices = len(indices) |
|
|
|
rotate_rest_pose[:, indices] = rotate_rest_pose[:, parents[ |
|
indices]] + torch.matmul(rot_mat_chain[:, parents[indices]], |
|
rel_rest_pose[:, indices]) |
|
|
|
child_final_loc = final_pose_skeleton[:, children[ |
|
indices]] - rotate_rest_pose[:, indices] |
|
|
|
if not train: |
|
orig_vec = rel_pose_skeleton[:, children[indices]] |
|
template_vec = rel_rest_pose[:, children[indices]] |
|
|
|
norm_t = torch.norm(template_vec, dim=2, |
|
keepdim=True) |
|
|
|
orig_vec = orig_vec * norm_t / \ |
|
torch.norm(orig_vec, dim=2, keepdim=True) |
|
|
|
diff = torch.norm(child_final_loc - orig_vec, |
|
dim=2, |
|
keepdim=True).reshape(-1) |
|
big_diff_idx = torch.where(diff > 15 / 1000)[0] |
|
|
|
|
|
child_final_loc = child_final_loc.reshape( |
|
batch_size * len_indices, 3, 1) |
|
orig_vec = orig_vec.reshape(batch_size * len_indices, 3, 1) |
|
child_final_loc[big_diff_idx] = orig_vec[big_diff_idx] |
|
child_final_loc = child_final_loc.reshape( |
|
batch_size, len_indices, 3, 1) |
|
|
|
child_final_loc = torch.matmul( |
|
rot_mat_chain[:, parents[indices]].transpose(2, 3), |
|
child_final_loc) |
|
|
|
|
|
child_rest_loc = rel_rest_pose[:, children[indices]] |
|
|
|
child_final_norm = torch.norm(child_final_loc, dim=2, keepdim=True) |
|
child_rest_norm = torch.norm(child_rest_loc, dim=2, keepdim=True) |
|
|
|
|
|
axis = torch.cross(child_rest_loc, child_final_loc, dim=2) |
|
axis_norm = torch.norm(axis, dim=2, keepdim=True) |
|
|
|
|
|
cos = torch.sum( |
|
child_rest_loc * child_final_loc, dim=2, |
|
keepdim=True) / (child_rest_norm * child_final_norm + 1e-8) |
|
sin = axis_norm / (child_rest_norm * child_final_norm + 1e-8) |
|
|
|
|
|
axis = axis / (axis_norm + 1e-8) |
|
|
|
|
|
|
|
rx, ry, rz = torch.split(axis, 1, dim=2) |
|
zeros = torch.zeros((batch_size, len_indices, 1, 1), |
|
dtype=dtype, |
|
device=device) |
|
|
|
K = torch.cat([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], dim=2) \ |
|
.view((batch_size, len_indices, 3, 3)) |
|
ident = torch.eye(3, dtype=dtype, |
|
device=device).reshape(1, 1, 3, 3) |
|
rot_mat_loc = ident + sin * K + (1 - cos) * torch.matmul(K, K) |
|
|
|
|
|
|
|
spin_axis = child_rest_loc / child_rest_norm |
|
|
|
rx, ry, rz = torch.split(spin_axis, 1, dim=2) |
|
zeros = torch.zeros((batch_size, len_indices, 1, 1), |
|
dtype=dtype, |
|
device=device) |
|
K = torch.cat([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], dim=2) \ |
|
.view((batch_size, len_indices, 3, 3)) |
|
ident = torch.eye(3, dtype=dtype, |
|
device=device).reshape(1, 1, 3, 3) |
|
|
|
phi_indices = [item - 1 for item in indices] |
|
cos, sin = torch.split(phis[:, phi_indices], 1, dim=2) |
|
cos = torch.unsqueeze(cos, dim=3) |
|
sin = torch.unsqueeze(sin, dim=3) |
|
rot_mat_spin = ident + sin * K + (1 - cos) * torch.matmul(K, K) |
|
rot_mat = torch.matmul(rot_mat_loc, rot_mat_spin) |
|
|
|
if (torch.det(rot_mat) < 0).any(): |
|
print(2, |
|
torch.det(rot_mat_loc) < 0, |
|
torch.det(rot_mat_spin) < 0) |
|
|
|
rot_mat_chain[:, indices] = torch.matmul( |
|
rot_mat_chain[:, parents[indices]], rot_mat) |
|
rot_mat_local[:, indices] = rot_mat |
|
|
|
|
|
|
|
rot_mats = rot_mat_local |
|
|
|
return rot_mats, rotate_rest_pose.squeeze(-1) |
|
|
|
|
|
def batch_get_pelvis_orient_svd(rel_pose_skeleton, rel_rest_pose, parents, |
|
children, dtype): |
|
pelvis_child = [int(children[0])] |
|
for i in range(1, parents.shape[0]): |
|
if parents[i] == 0 and i not in pelvis_child: |
|
pelvis_child.append(i) |
|
|
|
rest_mat = [] |
|
target_mat = [] |
|
for child in pelvis_child: |
|
rest_mat.append(rel_rest_pose[:, child].clone()) |
|
target_mat.append(rel_pose_skeleton[:, child].clone()) |
|
|
|
rest_mat = torch.cat(rest_mat, dim=2) |
|
target_mat = torch.cat(target_mat, dim=2) |
|
S = rest_mat.bmm(target_mat.transpose(1, 2)) |
|
|
|
mask_zero = S.sum(dim=(1, 2)) |
|
|
|
S_non_zero = S[mask_zero != 0].reshape(-1, 3, 3) |
|
|
|
U, _, V = torch.svd(S_non_zero) |
|
|
|
rot_mat = torch.zeros_like(S) |
|
rot_mat[mask_zero == 0] = torch.eye(3, device=S.device) |
|
|
|
|
|
det_u_v = torch.det(torch.bmm(V, U.transpose(1, 2))) |
|
det_modify_mat = torch.eye(3, device=U.device).unsqueeze(0).expand( |
|
U.shape[0], -1, -1).clone() |
|
det_modify_mat[:, 2, 2] = det_u_v |
|
rot_mat_non_zero = torch.bmm(torch.bmm(V, det_modify_mat), |
|
U.transpose(1, 2)) |
|
|
|
rot_mat[mask_zero != 0] = rot_mat_non_zero |
|
|
|
assert torch.sum(torch.isnan(rot_mat)) == 0, ('rot_mat', rot_mat) |
|
|
|
return rot_mat |
|
|
|
|
|
def batch_get_pelvis_orient(rel_pose_skeleton, rel_rest_pose, parents, |
|
children, dtype): |
|
batch_size = rel_pose_skeleton.shape[0] |
|
device = rel_pose_skeleton.device |
|
|
|
assert children[0] == 3 |
|
pelvis_child = [int(children[0])] |
|
for i in range(1, parents.shape[0]): |
|
if parents[i] == 0 and i not in pelvis_child: |
|
pelvis_child.append(i) |
|
|
|
spine_final_loc = rel_pose_skeleton[:, int(children[0])].clone() |
|
spine_rest_loc = rel_rest_pose[:, int(children[0])].clone() |
|
spine_norm = torch.norm(spine_final_loc, dim=1, keepdim=True) |
|
spine_norm = spine_final_loc / (spine_norm + 1e-8) |
|
|
|
rot_mat_spine = vectors2rotmat(spine_rest_loc, spine_final_loc, dtype) |
|
|
|
assert torch.sum(torch.isnan(rot_mat_spine)) == 0, ('rot_mat_spine', |
|
rot_mat_spine) |
|
center_final_loc = 0 |
|
center_rest_loc = 0 |
|
for child in pelvis_child: |
|
if child == int(children[0]): |
|
continue |
|
center_final_loc = center_final_loc + \ |
|
rel_pose_skeleton[:, child].clone() |
|
center_rest_loc = center_rest_loc + rel_rest_pose[:, child].clone() |
|
center_final_loc = center_final_loc / (len(pelvis_child) - 1) |
|
center_rest_loc = center_rest_loc / (len(pelvis_child) - 1) |
|
|
|
center_rest_loc = torch.matmul(rot_mat_spine, center_rest_loc) |
|
|
|
center_final_loc = center_final_loc - \ |
|
torch.sum(center_final_loc * spine_norm, |
|
dim=1, keepdim=True) * spine_norm |
|
center_rest_loc = center_rest_loc - \ |
|
torch.sum(center_rest_loc * spine_norm, |
|
dim=1, keepdim=True) * spine_norm |
|
|
|
center_final_loc_norm = torch.norm(center_final_loc, dim=1, keepdim=True) |
|
center_rest_loc_norm = torch.norm(center_rest_loc, dim=1, keepdim=True) |
|
|
|
|
|
axis = torch.cross(center_rest_loc, center_final_loc, dim=1) |
|
axis_norm = torch.norm(axis, dim=1, keepdim=True) |
|
|
|
|
|
cos = torch.sum(center_rest_loc * center_final_loc, dim=1, keepdim=True) / \ |
|
(center_rest_loc_norm * center_final_loc_norm + 1e-8) |
|
sin = axis_norm / (center_rest_loc_norm * center_final_loc_norm + 1e-8) |
|
|
|
assert torch.sum(torch.isnan(cos)) == 0, ('cos', cos) |
|
assert torch.sum(torch.isnan(sin)) == 0, ('sin', sin) |
|
|
|
axis = axis / (axis_norm + 1e-8) |
|
|
|
|
|
|
|
rx, ry, rz = torch.split(axis, 1, dim=1) |
|
zeros = torch.zeros((batch_size, 1, 1), dtype=dtype, device=device) |
|
|
|
K = torch.cat([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], dim=1) \ |
|
.view((batch_size, 3, 3)) |
|
ident = torch.eye(3, dtype=dtype, device=device).unsqueeze(dim=0) |
|
rot_mat_center = ident + sin * K + (1 - cos) * torch.bmm(K, K) |
|
|
|
rot_mat = torch.matmul(rot_mat_center, rot_mat_spine) |
|
|
|
return rot_mat |
|
|
|
|
|
def batch_get_3children_orient_svd(rel_pose_skeleton, rel_rest_pose, |
|
rot_mat_chain_parent, children_list, dtype): |
|
rest_mat = [] |
|
target_mat = [] |
|
for c, child in enumerate(children_list): |
|
if isinstance(rel_pose_skeleton, list): |
|
target = rel_pose_skeleton[c].clone() |
|
template = rel_rest_pose[c].clone() |
|
else: |
|
target = rel_pose_skeleton[:, child].clone() |
|
template = rel_rest_pose[:, child].clone() |
|
|
|
target = torch.matmul(rot_mat_chain_parent.transpose(1, 2), target) |
|
|
|
target_mat.append(target) |
|
rest_mat.append(template) |
|
|
|
rest_mat = torch.cat(rest_mat, dim=2) |
|
target_mat = torch.cat(target_mat, dim=2) |
|
S = rest_mat.bmm(target_mat.transpose(1, 2)) |
|
|
|
U, _, V = torch.svd(S) |
|
|
|
|
|
det_u_v = torch.det(torch.bmm(V, U.transpose(1, 2))) |
|
det_modify_mat = torch.eye(3, device=U.device).unsqueeze(0).expand( |
|
U.shape[0], -1, -1).clone() |
|
det_modify_mat[:, 2, 2] = det_u_v |
|
rot_mat = torch.bmm(torch.bmm(V, det_modify_mat), U.transpose(1, 2)) |
|
|
|
assert torch.sum(torch.isnan(rot_mat)) == 0, ('3children rot_mat', rot_mat) |
|
return rot_mat |
|
|
|
|
|
def vectors2rotmat(vec_rest, vec_final, dtype): |
|
batch_size = vec_final.shape[0] |
|
device = vec_final.device |
|
|
|
|
|
vec_final_norm = torch.norm(vec_final, dim=1, keepdim=True) |
|
vec_rest_norm = torch.norm(vec_rest, dim=1, keepdim=True) |
|
|
|
|
|
axis = torch.cross(vec_rest, vec_final, dim=1) |
|
axis_norm = torch.norm(axis, dim=1, keepdim=True) |
|
|
|
|
|
cos = torch.sum(vec_rest * vec_final, dim=1, keepdim=True) / \ |
|
(vec_rest_norm * vec_final_norm + 1e-8) |
|
sin = axis_norm / (vec_rest_norm * vec_final_norm + 1e-8) |
|
|
|
|
|
axis = axis / (axis_norm + 1e-8) |
|
|
|
|
|
|
|
rx, ry, rz = torch.split(axis, 1, dim=1) |
|
zeros = torch.zeros((batch_size, 1, 1), dtype=dtype, device=device) |
|
|
|
K = torch.cat([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], dim=1) \ |
|
.view((batch_size, 3, 3)) |
|
ident = torch.eye(3, dtype=dtype, device=device).unsqueeze(dim=0) |
|
rot_mat_loc = ident + sin * K + (1 - cos) * torch.bmm(K, K) |
|
|
|
return rot_mat_loc |
|
|
|
|
|
def rotmat_to_quat(rotation_matrix): |
|
assert rotation_matrix.shape[1:] == (3, 3) |
|
rot_mat = rotation_matrix.reshape(-1, 3, 3) |
|
hom = torch.tensor([0, 0, 1], |
|
dtype=torch.float32, |
|
device=rotation_matrix.device) |
|
hom = hom.reshape(1, 3, 1).expand(rot_mat.shape[0], -1, -1) |
|
rotation_matrix = torch.cat([rot_mat, hom], dim=-1) |
|
|
|
quaternion = rotation_matrix_to_quaternion(rotation_matrix) |
|
return quaternion |
|
|
|
|
|
def rotation_matrix_to_quaternion(rotation_matrix, eps=1e-6): |
|
""" |
|
This function is borrowed from https://github.com/kornia/kornia |
|
|
|
Convert 3x4 rotation matrix to 4d quaternion vector |
|
|
|
This algorithm is based on algorithm described in |
|
https://github.com/KieranWynn/pyquaternion/blob/master/pyquaternion/quaternion.py#L201 |
|
|
|
Args: |
|
rotation_matrix (Tensor): the rotation matrix to convert. |
|
|
|
Return: |
|
Tensor: the rotation in quaternion |
|
|
|
Shape: |
|
- Input: :math:`(N, 3, 4)` |
|
- Output: :math:`(N, 4)` |
|
|
|
Example: |
|
>>> input = torch.rand(4, 3, 4) # Nx3x4 |
|
>>> output = tgm.rotation_matrix_to_quaternion(input) # Nx4 |
|
""" |
|
if not torch.is_tensor(rotation_matrix): |
|
raise TypeError("Input type is not a torch.Tensor. Got {}".format( |
|
type(rotation_matrix))) |
|
|
|
if len(rotation_matrix.shape) > 3: |
|
raise ValueError( |
|
"Input size must be a three dimensional tensor. Got {}".format( |
|
rotation_matrix.shape)) |
|
if not rotation_matrix.shape[-2:] == (3, 4): |
|
raise ValueError( |
|
"Input size must be a N x 3 x 4 tensor. Got {}".format( |
|
rotation_matrix.shape)) |
|
|
|
rmat_t = torch.transpose(rotation_matrix, 1, 2) |
|
|
|
mask_d2 = rmat_t[:, 2, 2] < eps |
|
|
|
mask_d0_d1 = rmat_t[:, 0, 0] > rmat_t[:, 1, 1] |
|
mask_d0_nd1 = rmat_t[:, 0, 0] < -rmat_t[:, 1, 1] |
|
|
|
t0 = 1 + rmat_t[:, 0, 0] - rmat_t[:, 1, 1] - rmat_t[:, 2, 2] |
|
q0 = torch.stack([ |
|
rmat_t[:, 1, 2] - rmat_t[:, 2, 1], t0, |
|
rmat_t[:, 0, 1] + rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2] |
|
], -1) |
|
t0_rep = t0.repeat(4, 1).t() |
|
|
|
t1 = 1 - rmat_t[:, 0, 0] + rmat_t[:, 1, 1] - rmat_t[:, 2, 2] |
|
q1 = torch.stack([ |
|
rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] + rmat_t[:, 1, 0], |
|
t1, rmat_t[:, 1, 2] + rmat_t[:, 2, 1] |
|
], -1) |
|
t1_rep = t1.repeat(4, 1).t() |
|
|
|
t2 = 1 - rmat_t[:, 0, 0] - rmat_t[:, 1, 1] + rmat_t[:, 2, 2] |
|
q2 = torch.stack([ |
|
rmat_t[:, 0, 1] - rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2], |
|
rmat_t[:, 1, 2] + rmat_t[:, 2, 1], t2 |
|
], -1) |
|
t2_rep = t2.repeat(4, 1).t() |
|
|
|
t3 = 1 + rmat_t[:, 0, 0] + rmat_t[:, 1, 1] + rmat_t[:, 2, 2] |
|
q3 = torch.stack([ |
|
t3, rmat_t[:, 1, 2] - rmat_t[:, 2, 1], |
|
rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] - rmat_t[:, 1, 0] |
|
], -1) |
|
t3_rep = t3.repeat(4, 1).t() |
|
|
|
mask_c0 = mask_d2 * mask_d0_d1 |
|
mask_c1 = mask_d2 * ~mask_d0_d1 |
|
mask_c2 = ~mask_d2 * mask_d0_nd1 |
|
mask_c3 = ~mask_d2 * ~mask_d0_nd1 |
|
mask_c0 = mask_c0.view(-1, 1).type_as(q0) |
|
mask_c1 = mask_c1.view(-1, 1).type_as(q1) |
|
mask_c2 = mask_c2.view(-1, 1).type_as(q2) |
|
mask_c3 = mask_c3.view(-1, 1).type_as(q3) |
|
|
|
q = q0 * mask_c0 + q1 * mask_c1 + q2 * mask_c2 + q3 * mask_c3 |
|
q /= torch.sqrt(t0_rep * mask_c0 + t1_rep * mask_c1 + |
|
t2_rep * mask_c2 + t3_rep * mask_c3) |
|
q *= 0.5 |
|
return q |
|
|
|
|
|
def quat_to_rotmat(quat): |
|
"""Convert quaternion coefficients to rotation matrix. |
|
Args: |
|
quat: size = [B, 4] 4 <===>(w, x, y, z) |
|
Returns: |
|
Rotation matrix corresponding to the quaternion -- size = [B, 3, 3] |
|
""" |
|
norm_quat = quat |
|
norm_quat = norm_quat / (norm_quat.norm(p=2, dim=1, keepdim=True) + 1e-8) |
|
w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:, |
|
2], norm_quat[:, |
|
3] |
|
|
|
B = quat.size(0) |
|
|
|
w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2) |
|
wx, wy, wz = w * x, w * y, w * z |
|
xy, xz, yz = x * y, x * z, y * z |
|
|
|
rotMat = torch.stack([ |
|
w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz, 2 * wz + 2 * xy, |
|
w2 - x2 + y2 - z2, 2 * yz - 2 * wx, 2 * xz - 2 * wy, 2 * wx + 2 * yz, |
|
w2 - x2 - y2 + z2 |
|
], |
|
dim=1).view(B, 3, 3) |
|
return rotMat |
|
|
|
|
|
def rotation_matrix_to_angle_axis(rotation_matrix): |
|
""" |
|
This function is borrowed from https://github.com/kornia/kornia |
|
|
|
Convert 3x4 rotation matrix to Rodrigues vector |
|
|
|
Args: |
|
rotation_matrix (Tensor): rotation matrix. |
|
|
|
Returns: |
|
Tensor: Rodrigues vector transformation. |
|
|
|
Shape: |
|
- Input: :math:`(N, 3, 4)` |
|
- Output: :math:`(N, 3)` |
|
|
|
Example: |
|
>>> input = torch.rand(2, 3, 4) # Nx4x4 |
|
>>> output = tgm.rotation_matrix_to_angle_axis(input) # Nx3 |
|
""" |
|
if rotation_matrix.shape[1:] == (3, 3): |
|
rot_mat = rotation_matrix.reshape(-1, 3, 3) |
|
hom = torch.tensor([0, 0, 1], |
|
dtype=torch.float32, |
|
device=rotation_matrix.device) |
|
hom = hom.reshape(1, 3, 1).expand(rot_mat.shape[0], -1, -1) |
|
rotation_matrix = torch.cat([rot_mat, hom], dim=-1) |
|
|
|
quaternion = rotation_matrix_to_quaternion(rotation_matrix) |
|
aa = quaternion_to_angle_axis(quaternion) |
|
aa[torch.isnan(aa)] = 0.0 |
|
return aa |
|
|
|
|
|
def quaternion_to_angle_axis(quaternion: torch.Tensor) -> torch.Tensor: |
|
""" |
|
This function is borrowed from https://github.com/kornia/kornia |
|
|
|
Convert quaternion vector to angle axis of rotation. |
|
|
|
Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h |
|
|
|
Args: |
|
quaternion (torch.Tensor): tensor with quaternions. |
|
|
|
Return: |
|
torch.Tensor: tensor with angle axis of rotation. |
|
|
|
Shape: |
|
- Input: :math:`(*, 4)` where `*` means, any number of dimensions |
|
- Output: :math:`(*, 3)` |
|
|
|
Example: |
|
>>> quaternion = torch.rand(2, 4) # Nx4 |
|
>>> angle_axis = tgm.quaternion_to_angle_axis(quaternion) # Nx3 |
|
""" |
|
if not torch.is_tensor(quaternion): |
|
raise TypeError("Input type is not a torch.Tensor. Got {}".format( |
|
type(quaternion))) |
|
|
|
if not quaternion.shape[-1] == 4: |
|
raise ValueError( |
|
"Input must be a tensor of shape Nx4 or 4. Got {}".format( |
|
quaternion.shape)) |
|
|
|
q1: torch.Tensor = quaternion[..., 1] |
|
q2: torch.Tensor = quaternion[..., 2] |
|
q3: torch.Tensor = quaternion[..., 3] |
|
sin_squared_theta: torch.Tensor = q1 * q1 + q2 * q2 + q3 * q3 |
|
|
|
sin_theta: torch.Tensor = torch.sqrt(sin_squared_theta) |
|
cos_theta: torch.Tensor = quaternion[..., 0] |
|
two_theta: torch.Tensor = 2.0 * torch.where( |
|
cos_theta < 0.0, torch.atan2(-sin_theta, -cos_theta), |
|
torch.atan2(sin_theta, cos_theta)) |
|
|
|
k_pos: torch.Tensor = two_theta / sin_theta |
|
k_neg: torch.Tensor = 2.0 * torch.ones_like(sin_theta) |
|
k: torch.Tensor = torch.where(sin_squared_theta > 0.0, k_pos, k_neg) |
|
|
|
angle_axis: torch.Tensor = torch.zeros_like(quaternion)[..., :3] |
|
angle_axis[..., 0] += q1 * k |
|
angle_axis[..., 1] += q2 * k |
|
angle_axis[..., 2] += q3 * k |
|
return angle_axis |
|
|