|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Functions for interacting with segmentation masks in the COCO format. |
|
|
|
The following terms are used in this module |
|
mask: a binary mask encoded as a 2D numpy array |
|
segm: a segmentation mask in one of the two COCO formats (polygon or RLE) |
|
polygon: COCO's polygon format |
|
RLE: COCO's run length encoding format |
|
""" |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
from __future__ import unicode_literals |
|
|
|
import numpy as np |
|
|
|
import pycocotools.mask as mask_util |
|
|
|
|
|
def GetDensePoseMask(Polys): |
|
MaskGen = np.zeros([256, 256]) |
|
for i in range(1, 15): |
|
if (Polys[i - 1]): |
|
current_mask = mask_util.decode(Polys[i - 1]) |
|
MaskGen[current_mask > 0] = i |
|
return MaskGen |
|
|
|
|
|
def flip_segms(segms, height, width): |
|
"""Left/right flip each mask in a list of masks.""" |
|
def _flip_poly(poly, width): |
|
flipped_poly = np.array(poly) |
|
flipped_poly[0::2] = width - np.array(poly[0::2]) - 1 |
|
return flipped_poly.tolist() |
|
|
|
def _flip_rle(rle, height, width): |
|
if 'counts' in rle and type(rle['counts']) == list: |
|
|
|
|
|
rle = mask_util.frPyObjects([rle], height, width) |
|
mask = mask_util.decode(rle) |
|
mask = mask[:, ::-1, :] |
|
rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8)) |
|
return rle |
|
|
|
flipped_segms = [] |
|
for segm in segms: |
|
if type(segm) == list: |
|
|
|
flipped_segms.append([_flip_poly(poly, width) for poly in segm]) |
|
else: |
|
|
|
assert type(segm) == dict |
|
flipped_segms.append(_flip_rle(segm, height, width)) |
|
return flipped_segms |
|
|
|
|
|
def polys_to_mask(polygons, height, width): |
|
"""Convert from the COCO polygon segmentation format to a binary mask |
|
encoded as a 2D array of data type numpy.float32. The polygon segmentation |
|
is understood to be enclosed inside a height x width image. The resulting |
|
mask is therefore of shape (height, width). |
|
""" |
|
rle = mask_util.frPyObjects(polygons, height, width) |
|
mask = np.array(mask_util.decode(rle), dtype=np.float32) |
|
|
|
mask = np.sum(mask, axis=2) |
|
mask = np.array(mask > 0, dtype=np.float32) |
|
return mask |
|
|
|
|
|
def mask_to_bbox(mask): |
|
"""Compute the tight bounding box of a binary mask.""" |
|
xs = np.where(np.sum(mask, axis=0) > 0)[0] |
|
ys = np.where(np.sum(mask, axis=1) > 0)[0] |
|
|
|
if len(xs) == 0 or len(ys) == 0: |
|
return None |
|
|
|
x0 = xs[0] |
|
x1 = xs[-1] |
|
y0 = ys[0] |
|
y1 = ys[-1] |
|
return np.array((x0, y0, x1, y1), dtype=np.float32) |
|
|
|
|
|
def polys_to_mask_wrt_box(polygons, box, M): |
|
"""Convert from the COCO polygon segmentation format to a binary mask |
|
encoded as a 2D array of data type numpy.float32. The polygon segmentation |
|
is understood to be enclosed in the given box and rasterized to an M x M |
|
mask. The resulting mask is therefore of shape (M, M). |
|
""" |
|
w = box[2] - box[0] |
|
h = box[3] - box[1] |
|
|
|
w = np.maximum(w, 1) |
|
h = np.maximum(h, 1) |
|
|
|
polygons_norm = [] |
|
for poly in polygons: |
|
p = np.array(poly, dtype=np.float32) |
|
p[0::2] = (p[0::2] - box[0]) * M / w |
|
p[1::2] = (p[1::2] - box[1]) * M / h |
|
polygons_norm.append(p) |
|
|
|
rle = mask_util.frPyObjects(polygons_norm, M, M) |
|
mask = np.array(mask_util.decode(rle), dtype=np.float32) |
|
|
|
mask = np.sum(mask, axis=2) |
|
mask = np.array(mask > 0, dtype=np.float32) |
|
return mask |
|
|
|
|
|
def polys_to_boxes(polys): |
|
"""Convert a list of polygons into an array of tight bounding boxes.""" |
|
boxes_from_polys = np.zeros((len(polys), 4), dtype=np.float32) |
|
for i in range(len(polys)): |
|
poly = polys[i] |
|
x0 = min(min(p[::2]) for p in poly) |
|
x1 = max(max(p[::2]) for p in poly) |
|
y0 = min(min(p[1::2]) for p in poly) |
|
y1 = max(max(p[1::2]) for p in poly) |
|
boxes_from_polys[i, :] = [x0, y0, x1, y1] |
|
|
|
return boxes_from_polys |
|
|
|
|
|
def rle_mask_voting(top_masks, all_masks, all_dets, iou_thresh, binarize_thresh, method='AVG'): |
|
"""Returns new masks (in correspondence with `top_masks`) by combining |
|
multiple overlapping masks coming from the pool of `all_masks`. Two methods |
|
for combining masks are supported: 'AVG' uses a weighted average of |
|
overlapping mask pixels; 'UNION' takes the union of all mask pixels. |
|
""" |
|
if len(top_masks) == 0: |
|
return |
|
|
|
all_not_crowd = [False] * len(all_masks) |
|
top_to_all_overlaps = mask_util.iou(top_masks, all_masks, all_not_crowd) |
|
decoded_all_masks = [np.array(mask_util.decode(rle), dtype=np.float32) for rle in all_masks] |
|
decoded_top_masks = [np.array(mask_util.decode(rle), dtype=np.float32) for rle in top_masks] |
|
all_boxes = all_dets[:, :4].astype(np.int32) |
|
all_scores = all_dets[:, 4] |
|
|
|
|
|
mask_shape = decoded_all_masks[0].shape |
|
mask_weights = np.zeros((len(all_masks), mask_shape[0], mask_shape[1])) |
|
for k in range(len(all_masks)): |
|
ref_box = all_boxes[k] |
|
x_0 = max(ref_box[0], 0) |
|
x_1 = min(ref_box[2] + 1, mask_shape[1]) |
|
y_0 = max(ref_box[1], 0) |
|
y_1 = min(ref_box[3] + 1, mask_shape[0]) |
|
mask_weights[k, y_0:y_1, x_0:x_1] = all_scores[k] |
|
mask_weights = np.maximum(mask_weights, 1e-5) |
|
|
|
top_segms_out = [] |
|
for k in range(len(top_masks)): |
|
|
|
if decoded_top_masks[k].sum() == 0: |
|
top_segms_out.append(top_masks[k]) |
|
continue |
|
|
|
inds_to_vote = np.where(top_to_all_overlaps[k] >= iou_thresh)[0] |
|
|
|
if len(inds_to_vote) == 1: |
|
top_segms_out.append(top_masks[k]) |
|
continue |
|
|
|
masks_to_vote = [decoded_all_masks[i] for i in inds_to_vote] |
|
if method == 'AVG': |
|
ws = mask_weights[inds_to_vote] |
|
soft_mask = np.average(masks_to_vote, axis=0, weights=ws) |
|
mask = np.array(soft_mask > binarize_thresh, dtype=np.uint8) |
|
elif method == 'UNION': |
|
|
|
soft_mask = np.sum(masks_to_vote, axis=0) |
|
mask = np.array(soft_mask > 1e-5, dtype=np.uint8) |
|
else: |
|
raise NotImplementedError('Method {} is unknown'.format(method)) |
|
rle = mask_util.encode(np.array(mask[:, :, np.newaxis], order='F'))[0] |
|
top_segms_out.append(rle) |
|
|
|
return top_segms_out |
|
|
|
|
|
def rle_mask_nms(masks, dets, thresh, mode='IOU'): |
|
"""Performs greedy non-maximum suppression based on an overlap measurement |
|
between masks. The type of measurement is determined by `mode` and can be |
|
either 'IOU' (standard intersection over union) or 'IOMA' (intersection over |
|
mininum area). |
|
""" |
|
if len(masks) == 0: |
|
return [] |
|
if len(masks) == 1: |
|
return [0] |
|
|
|
if mode == 'IOU': |
|
|
|
all_not_crowds = [False] * len(masks) |
|
ious = mask_util.iou(masks, masks, all_not_crowds) |
|
elif mode == 'IOMA': |
|
|
|
all_crowds = [True] * len(masks) |
|
|
|
ious = mask_util.iou(masks, masks, all_crowds) |
|
|
|
|
|
ious = np.maximum(ious, ious.transpose()) |
|
elif mode == 'CONTAINMENT': |
|
|
|
|
|
all_crowds = [True] * len(masks) |
|
ious = mask_util.iou(masks, masks, all_crowds) |
|
else: |
|
raise NotImplementedError('Mode {} is unknown'.format(mode)) |
|
|
|
scores = dets[:, 4] |
|
order = np.argsort(-scores) |
|
|
|
keep = [] |
|
while order.size > 0: |
|
i = order[0] |
|
keep.append(i) |
|
ovr = ious[i, order[1:]] |
|
inds_to_keep = np.where(ovr <= thresh)[0] |
|
order = order[inds_to_keep + 1] |
|
|
|
return keep |
|
|
|
|
|
def rle_masks_to_boxes(masks): |
|
"""Computes the bounding box of each mask in a list of RLE encoded masks.""" |
|
if len(masks) == 0: |
|
return [] |
|
|
|
decoded_masks = [np.array(mask_util.decode(rle), dtype=np.float32) for rle in masks] |
|
|
|
def get_bounds(flat_mask): |
|
inds = np.where(flat_mask > 0)[0] |
|
return inds.min(), inds.max() |
|
|
|
boxes = np.zeros((len(decoded_masks), 4)) |
|
keep = [True] * len(decoded_masks) |
|
for i, mask in enumerate(decoded_masks): |
|
if mask.sum() == 0: |
|
keep[i] = False |
|
continue |
|
flat_mask = mask.sum(axis=0) |
|
x0, x1 = get_bounds(flat_mask) |
|
flat_mask = mask.sum(axis=1) |
|
y0, y1 = get_bounds(flat_mask) |
|
boxes[i, :] = (x0, y0, x1, y1) |
|
|
|
return boxes, np.where(keep)[0] |
|
|