|
import os |
|
os.system("git clone https://github.com/google-research/frame-interpolation") |
|
import sys |
|
sys.path.append("frame-interpolation") |
|
|
|
import math |
|
import cv2 |
|
import numpy as np |
|
import tensorflow as tf |
|
import mediapy |
|
from PIL import Image |
|
|
|
import gradio as gr |
|
|
|
from huggingface_hub import snapshot_download |
|
|
|
from image_tools.sizes import resize_and_crop |
|
from moviepy.editor import * |
|
|
|
|
|
model = snapshot_download(repo_id="akhaliq/frame-interpolation-film-style") |
|
from eval import interpolator, util |
|
interpolator = interpolator.Interpolator(model, None) |
|
|
|
ffmpeg_path = util.get_ffmpeg_path() |
|
mediapy.set_ffmpeg(ffmpeg_path) |
|
|
|
|
|
def do_interpolation(frame1, frame2, interpolation): |
|
print("tween frames: " + str(interpolation)) |
|
print(frame1, frame2) |
|
input_frames = [frame1, frame2] |
|
frames = list( |
|
util.interpolate_recursively_from_files( |
|
input_frames, int(interpolation), interpolator)) |
|
|
|
|
|
mediapy.write_video(f"{frame1}_to_{frame2}_out.mp4", frames, fps=25) |
|
return f"{frame1}_to_{frame2}_out.mp4" |
|
|
|
def get_frames(video_in, step, name, resize_w): |
|
frames = [] |
|
cap = cv2.VideoCapture(video_in) |
|
cframes = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) |
|
cfps = int(cap.get(cv2.CAP_PROP_FPS)) |
|
print(f'frames: {cframes}, fps: {cfps}') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fps = cap.get(cv2.CAP_PROP_FPS) |
|
print("video fps: " + str(fps)) |
|
i=0 |
|
while(cap.isOpened()): |
|
ret, frame = cap.read() |
|
if ret == False: |
|
break |
|
if resize_w > 0: |
|
resize_h = resize_w / 2.0 |
|
frame = cv2.resize(frame, (int(resize_w), int(resize_h))) |
|
|
|
cv2.imwrite(f"{name}_{step}{str(i)}.jpg",frame) |
|
frames.append(f"{name}_{step}{str(i)}.jpg") |
|
i+=1 |
|
|
|
cap.release() |
|
cv2.destroyAllWindows() |
|
print("broke the video into frames") |
|
|
|
return frames, fps |
|
|
|
|
|
def create_video(frames, fps, type): |
|
print("building video result") |
|
clip = ImageSequenceClip(frames, fps=fps) |
|
clip.write_videofile(type + "_result.mp4", fps=fps) |
|
|
|
return type + "_result.mp4" |
|
|
|
|
|
def infer(url_in,interpolation,fps_output,resize_n,winsize): |
|
|
|
fps_output = logscale(fps_output) |
|
|
|
break_vid = get_frames(url_in, "vid_input_frame", "origin", resize_n) |
|
frames_list = break_vid[0] |
|
fps = break_vid[1] |
|
print(f"ORIGIN FPS: {fps}") |
|
n_frame = int(15*fps) |
|
|
|
|
|
if n_frame >= len(frames_list): |
|
print("video is shorter than the cut value") |
|
n_frame = len(frames_list) |
|
|
|
|
|
result_frames = [] |
|
print("set stop frames to: " + str(n_frame)) |
|
|
|
for idx, frame in enumerate(frames_list[0:int(n_frame)]): |
|
if idx < len(frames_list) - 1: |
|
next_frame = frames_list[idx+1] |
|
interpolated_frames = do_interpolation(frame, next_frame, interpolation) |
|
break_interpolated_video = get_frames(interpolated_frames, "interpol", f"{idx}_", 0) |
|
print(break_interpolated_video[0]) |
|
for j, img in enumerate(break_interpolated_video[0][0:len(break_interpolated_video[0])-1]): |
|
print(f"IMG:{img}") |
|
os.rename(img, f"{frame}_to_{next_frame}_{j}.jpg") |
|
result_frames.append(f"{frame}_to_{next_frame}_{j}.jpg") |
|
|
|
print("frames " + str(idx) + " & " + str(idx+1) + "/" + str(n_frame) + ": done;") |
|
|
|
result_frames.append(f"{frames_list[n_frame-1]}") |
|
final_vid = create_video(result_frames, fps_output, "interpolated") |
|
|
|
files = final_vid |
|
|
|
depth_map = cv2.VideoCapture(final_vid) |
|
print("total frames: " + str(len(result_frames))) |
|
|
|
ret, fr1 = depth_map.read() |
|
prvs = cv2.cvtColor(fr1, cv2.COLOR_RGBA2GRAY) |
|
hsv = np.zeros_like(fr1) |
|
hsv[..., 1] = 255 |
|
res = np.zeros_like(prvs) |
|
flow = res |
|
while(depth_map.isOpened()): |
|
ret, fr2 = depth_map.read() |
|
if ret == False: |
|
break |
|
nxt = cv2.cvtColor(fr2, cv2.COLOR_RGBA2GRAY) |
|
fl = cv2.calcOpticalFlowFarneback(prvs, nxt, flow, 0.5, 3, winsize, 3, 5, 1.2, 0) |
|
mag, ang = cv2.cartToPolar(fl[..., 0], fl[..., 1]) |
|
hsv[..., 0] = ang*180/np.pi/2 |
|
hsv[..., 2] = cv2.normalize(mag, None, 0, 255, cv2.NORM_MINMAX) |
|
rgb = cv2.cvtColor(hsv, cv2.COLOR_HSV2RGB) |
|
rgb = cv2.cvtColor(rgb, cv2.COLOR_RGBA2GRAY) |
|
alpha = 1.0/len(result_frames) |
|
beta = (1.0 - alpha) |
|
res = cv2.addWeighted(rgb, alpha, res, beta, 0.0, res) |
|
prvs = nxt |
|
|
|
cv2.imwrite('opticalfb.png', res) |
|
depth_map.release() |
|
cv2.destroyAllWindows() |
|
|
|
return final_vid, files, 'opticalfb.png' |
|
|
|
|
|
def logscale(linear): |
|
return int(math.pow(2, linear)) |
|
|
|
|
|
title=""" |
|
<div style="text-align: center; max-width: 500px; margin: 0 auto;"> |
|
<div |
|
style=" |
|
display: inline-flex; |
|
align-items: center; |
|
gap: 0.8rem; |
|
font-size: 1.75rem; |
|
margin-bottom: 10px; |
|
" |
|
> |
|
<h1 style="font-weight: 600; margin-bottom: 7px;"> |
|
Video interpolation with FILM |
|
</h1> |
|
|
|
</div> |
|
<p> This space uses FILM to generate interpolation frames in a video you need to 'tween'.<br /> |
|
Generation is limited to 15 seconds, from the beginning of your video input.<br /> |
|
<a style="display:inline-block" href="https://huggingface.co/spaces/freealise/video_frame_interpolation?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a> |
|
</p> |
|
</div> |
|
""" |
|
|
|
with gr.Blocks() as demo: |
|
with gr.Column(): |
|
gr.HTML(title) |
|
with gr.Row(): |
|
with gr.Column(): |
|
url_input = gr.Textbox(value="./examples/streetview.mp4", label="URL") |
|
resize_num = gr.Slider(minimum=1, maximum=4096, step=1, value=256, label="Resize to width: ") |
|
winsize_num = gr.Slider(minimum=1, maximum=256, step=1, value=15, label="Motion detection window size: ") |
|
with gr.Row(): |
|
interpolation_slider = gr.Slider(minimum=1, maximum=5, step=1, value=1, label="Interpolation Steps: ") |
|
interpolation = gr.Label(value=2, show_label=False) |
|
interpolation_slider.change(fn=logscale, inputs=[interpolation_slider], outputs=[interpolation]) |
|
with gr.Row(): |
|
fps_output_slider = gr.Slider(minimum=0, maximum=5, step=1, value=0, label="FPS output: ") |
|
fps_output = gr.Label(value=1, show_label=False) |
|
fps_output_slider.change(fn=logscale, inputs=[fps_output_slider], outputs=[fps_output]) |
|
submit_btn = gr.Button("Submit") |
|
|
|
with gr.Column(): |
|
video_output = gr.Video() |
|
file_output = gr.File() |
|
depth_output = gr.ImageEditor(image_mode="L", interactive=True, label="Depth map") |
|
|
|
gr.Examples( |
|
examples=[["./examples/streetview.mp4", 1, 0, 256, 15]], |
|
fn=infer, |
|
inputs=[url_input,interpolation_slider,fps_output_slider,resize_num,winsize_num], |
|
outputs=[video_output,file_output,depth_output], |
|
cache_examples=True |
|
) |
|
|
|
submit_btn.click(fn=infer, inputs=[url_input,interpolation_slider,fps_output_slider,resize_num,winsize_num], outputs=[video_output, file_output, depth_output]) |
|
|
|
demo.launch() |