File size: 4,756 Bytes
643e1b9
 
 
57b8c08
231b62a
703abf3
 
c611543
703abf3
f7aeb1e
643e1b9
bb0b4d5
d3df8fd
 
b7a41e7
d3df8fd
f7aeb1e
d3df8fd
7bc4367
 
d3df8fd
f7aeb1e
 
 
d3df8fd
f7aeb1e
 
 
d3df8fd
f7aeb1e
d3df8fd
f7aeb1e
 
6130d38
 
7bc4367
6130d38
b7a41e7
 
f7aeb1e
 
 
f57e33c
 
 
 
 
 
 
 
 
 
 
b7a41e7
f7aeb1e
 
 
643e1b9
 
 
 
 
e90ba30
643e1b9
 
 
 
 
 
 
 
 
 
 
 
e90ba30
 
643e1b9
231b62a
 
e90ba30
703abf3
 
 
e90ba30
703abf3
e90ba30
703abf3
 
 
 
 
e90ba30
703abf3
 
 
 
 
e90ba30
 
 
 
 
 
 
703abf3
 
e90ba30
703abf3
 
 
e90ba30
 
643e1b9
 
703abf3
e90ba30
91d2747
ed51056
 
91d2747
ed51056
 
 
 
f7aeb1e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
from transformers import AutoTokenizer, AutoModelForCausalLM
from llama_index.core.llms import  CustomLLM, LLMMetadata, CompletionResponse, CompletionResponseGen
from llama_index.core.llms.callbacks import llm_completion_callback
from typing import Any, Iterator
import torch
from transformers import TextIteratorStreamer
from threading import Thread
from pydantic import Field, field_validator

# for transformers 2
class GemmaLLMInterface(CustomLLM):
    model: Any = None
    context_window: int = 8192
    num_output: int = 2048
    model_name: str = "gemma-2b-it"

    def _format_prompt(self, message: str) -> str:
        return (
            f"<start_of_turn>user\n{message}<end_of_turn>\n"
            f"<start_of_turn>model\n"
        )

    @property
    def metadata(self) -> LLMMetadata:
        """Get LLM metadata."""
        return LLMMetadata(
            context_window=self.context_window,
            num_output=self.num_output,
            model_name=self.model_name,
        )

    @llm_completion_callback()
    def complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:
        prompt = self._format_prompt(prompt)
        inputs = self.model.tokenizer(prompt, return_tensors="pt").to(self.model.device)
        outputs = self.model.generate(**inputs, max_length=self.num_output)
        response = self.model.tokenizer.decode(outputs[0], skip_special_tokens=True)
        response = response[len(prompt):].strip()
        return CompletionResponse(text=response if response else "No response generated.")

    @llm_completion_callback()
    def stream_complete(self, prompt: str, **kwargs: Any) -> CompletionResponseGen:
        prompt = self._format_prompt(prompt)
        inputs = self.model.tokenizer(prompt, return_tensors="pt").to(self.model.device)
        
        streamed_response = ""
        for output in self.model.generate(**inputs, max_length=self.num_output, streaming=True):
            new_token = self.model.tokenizer.decode(output[0], skip_special_tokens=True)
            if new_token:
                streamed_response += new_token
                yield CompletionResponse(text=streamed_response, delta=new_token)
        
        if not streamed_response:
            yield CompletionResponse(text="No response generated.", delta="No response generated.")

# for transformers 1
"""class GemmaLLMInterface(CustomLLM):
    model: Any
    tokenizer: Any
    context_window: int = 8192
    num_output: int = 2048
    model_name: str = "gemma_2"
    
    def _format_prompt(self, message: str) -> str:
        return (
            f"<start_of_turn>user\n{message}<end_of_turn>\n<start_of_turn>model\n"
        )

    @property
    def metadata(self) -> LLMMetadata:
        return LLMMetadata(
            context_window=self.context_window,
            num_output=self.num_output,
            model_name=self.model_name,
        )
    
    def _prepare_generation(self, prompt: str) -> tuple:
        prompt = self._format_prompt(prompt)
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.model.to(device)
        
        inputs = self.tokenizer(prompt, return_tensors="pt", add_special_tokens=True).to(device)
        if inputs["input_ids"].shape[1] > self.context_window:
            inputs["input_ids"] = inputs["input_ids"][:, -self.context_window:]
        
        streamer = TextIteratorStreamer(self.tokenizer, timeout=None, skip_prompt=True, skip_special_tokens=True)
        
        generate_kwargs = {
            "input_ids": inputs["input_ids"],
            "streamer": streamer,
            "max_new_tokens": self.num_output,
            "do_sample": True,
            "top_p": 0.9,
            "top_k": 50,
            "temperature": 0.7,
            "num_beams": 1,
            "repetition_penalty": 1.1,
        }
        
        return streamer, generate_kwargs
           
    @llm_completion_callback()
    def complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:
        streamer, generate_kwargs = self._prepare_generation(prompt)
        
        t = Thread(target=self.model.generate, kwargs=generate_kwargs)
        t.start()
        
        response = ""
        for new_token in streamer:
            response += new_token
        
        return CompletionResponse(text=response)

    @llm_completion_callback()
    def stream_complete(self, prompt: str, **kwargs: Any) -> CompletionResponseGen:
        streamer, generate_kwargs = self._prepare_generation(prompt)

        t = Thread(target=self.model.generate, kwargs=generate_kwargs)
        t.start()

        try:
            for new_token in streamer:
                yield CompletionResponse(text=new_token)
        except StopIteration:
            return"""