Spaces:
Running
on
Zero
Running
on
Zero
amazonaws-sp
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -2,28 +2,30 @@
|
|
2 |
|
3 |
from __future__ import annotations
|
4 |
|
|
|
5 |
import os
|
6 |
import random
|
7 |
|
8 |
import gradio as gr
|
9 |
import numpy as np
|
10 |
-
import PIL.Image
|
11 |
import spaces
|
12 |
import torch
|
13 |
-
from
|
|
|
|
|
14 |
|
15 |
-
DESCRIPTION = "#
|
16 |
if not torch.cuda.is_available():
|
17 |
-
DESCRIPTION += "\n<p
|
18 |
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
20 |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
|
21 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1824"))
|
22 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
|
23 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
24 |
-
ENABLE_REFINER = os.getenv("ENABLE_REFINER", "1") == "1"
|
25 |
ENABLE_USE_LORA = os.getenv("ENABLE_USE_LORA", "1") == "1"
|
26 |
ENABLE_USE_VAE = os.getenv("ENABLE_USE_VAE", "1") == "1"
|
|
|
27 |
|
28 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
29 |
|
@@ -46,26 +48,37 @@ def generate(
|
|
46 |
width: int = 1024,
|
47 |
height: int = 1024,
|
48 |
guidance_scale_base: float = 5.0,
|
49 |
-
guidance_scale_refiner: float = 5.0,
|
50 |
num_inference_steps_base: int = 25,
|
51 |
-
|
52 |
use_vae: bool = False,
|
53 |
use_lora: bool = False,
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
lora = 'amazonaws-la/juliette',
|
58 |
lora_scale: float = 0.7,
|
59 |
-
|
|
|
|
|
60 |
if torch.cuda.is_available():
|
61 |
-
|
62 |
-
if not use_vae:
|
63 |
-
pipe = DiffusionPipeline.from_pretrained(model, torch_dtype=torch.float16)
|
64 |
|
65 |
-
if
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
if use_lora:
|
70 |
pipe.load_lora_weights(lora)
|
71 |
pipe.fuse_lora(lora_scale)
|
@@ -88,7 +101,7 @@ def generate(
|
|
88 |
if not use_negative_prompt_2:
|
89 |
negative_prompt_2 = None # type: ignore
|
90 |
|
91 |
-
if not
|
92 |
return pipe(
|
93 |
prompt=prompt,
|
94 |
negative_prompt=negative_prompt,
|
@@ -102,8 +115,10 @@ def generate(
|
|
102 |
output_type="pil",
|
103 |
).images[0]
|
104 |
else:
|
105 |
-
|
106 |
prompt=prompt,
|
|
|
|
|
107 |
negative_prompt=negative_prompt,
|
108 |
prompt_2=prompt_2,
|
109 |
negative_prompt_2=negative_prompt_2,
|
@@ -112,75 +127,67 @@ def generate(
|
|
112 |
guidance_scale=guidance_scale_base,
|
113 |
num_inference_steps=num_inference_steps_base,
|
114 |
generator=generator,
|
115 |
-
output_type="
|
116 |
-
).images
|
117 |
-
image = refiner(
|
118 |
-
prompt=prompt,
|
119 |
-
negative_prompt=negative_prompt,
|
120 |
-
prompt_2=prompt_2,
|
121 |
-
negative_prompt_2=negative_prompt_2,
|
122 |
-
guidance_scale=guidance_scale_refiner,
|
123 |
-
num_inference_steps=num_inference_steps_refiner,
|
124 |
-
image=latents,
|
125 |
-
generator=generator,
|
126 |
).images[0]
|
127 |
-
return
|
128 |
-
|
129 |
|
130 |
examples = [
|
131 |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
132 |
"An astronaut riding a green horse",
|
133 |
]
|
134 |
|
135 |
-
with gr.Blocks(css="style.css") as demo:
|
136 |
-
gr.
|
137 |
-
|
138 |
-
value="Duplicate Space for private use",
|
139 |
-
elem_id="duplicate-button",
|
140 |
-
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
|
141 |
)
|
|
|
142 |
with gr.Group():
|
143 |
-
model = gr.Text(label='Model')
|
144 |
-
vaecall = gr.Text(label='VAE')
|
145 |
-
lora = gr.Text(label='LoRA')
|
146 |
lora_scale = gr.Slider(
|
|
|
147 |
label="Lora Scale",
|
148 |
minimum=0.01,
|
149 |
maximum=1,
|
150 |
step=0.01,
|
151 |
value=0.7,
|
152 |
)
|
|
|
153 |
with gr.Row():
|
154 |
prompt = gr.Text(
|
|
|
155 |
label="Prompt",
|
156 |
show_label=False,
|
157 |
max_lines=1,
|
158 |
-
placeholder="Enter your prompt",
|
159 |
container=False,
|
160 |
)
|
161 |
run_button = gr.Button("Run", scale=0)
|
162 |
result = gr.Image(label="Result", show_label=False)
|
163 |
with gr.Accordion("Advanced options", open=False):
|
164 |
with gr.Row():
|
|
|
|
|
|
|
165 |
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False)
|
166 |
use_prompt_2 = gr.Checkbox(label="Use prompt 2", value=False)
|
167 |
use_negative_prompt_2 = gr.Checkbox(label="Use negative prompt 2", value=False)
|
168 |
negative_prompt = gr.Text(
|
|
|
169 |
label="Negative prompt",
|
170 |
max_lines=1,
|
171 |
-
placeholder="Enter a negative prompt",
|
172 |
visible=False,
|
173 |
)
|
174 |
prompt_2 = gr.Text(
|
|
|
175 |
label="Prompt 2",
|
176 |
max_lines=1,
|
177 |
-
placeholder="Enter your prompt",
|
178 |
visible=False,
|
179 |
)
|
180 |
negative_prompt_2 = gr.Text(
|
|
|
181 |
label="Negative prompt 2",
|
182 |
max_lines=1,
|
183 |
-
placeholder="Enter a negative prompt",
|
184 |
visible=False,
|
185 |
)
|
186 |
|
@@ -207,38 +214,33 @@ with gr.Blocks(css="style.css") as demo:
|
|
207 |
step=32,
|
208 |
value=1024,
|
209 |
)
|
210 |
-
|
211 |
-
use_lora = gr.Checkbox(label='Use Lora', value=False, visible=ENABLE_USE_LORA)
|
212 |
-
apply_refiner = gr.Checkbox(label="Apply refiner", value=False, visible=ENABLE_REFINER)
|
213 |
with gr.Row():
|
214 |
guidance_scale_base = gr.Slider(
|
215 |
-
|
|
|
216 |
minimum=1,
|
217 |
maximum=20,
|
218 |
step=0.1,
|
219 |
value=5.0,
|
220 |
)
|
|
|
221 |
num_inference_steps_base = gr.Slider(
|
222 |
-
|
|
|
223 |
minimum=10,
|
224 |
maximum=100,
|
225 |
step=1,
|
226 |
value=25,
|
227 |
)
|
228 |
-
with gr.Row(
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
num_inference_steps_refiner = gr.Slider(
|
237 |
-
label="Number of inference steps for refiner",
|
238 |
-
minimum=10,
|
239 |
-
maximum=100,
|
240 |
-
step=1,
|
241 |
-
value=25,
|
242 |
)
|
243 |
|
244 |
gr.Examples(
|
@@ -284,10 +286,10 @@ with gr.Blocks(css="style.css") as demo:
|
|
284 |
queue=False,
|
285 |
api_name=False,
|
286 |
)
|
287 |
-
|
288 |
fn=lambda x: gr.update(visible=x),
|
289 |
-
inputs=
|
290 |
-
outputs=
|
291 |
queue=False,
|
292 |
api_name=False,
|
293 |
)
|
@@ -319,16 +321,16 @@ with gr.Blocks(css="style.css") as demo:
|
|
319 |
width,
|
320 |
height,
|
321 |
guidance_scale_base,
|
322 |
-
guidance_scale_refiner,
|
323 |
num_inference_steps_base,
|
324 |
-
|
325 |
use_vae,
|
326 |
use_lora,
|
327 |
-
apply_refiner,
|
328 |
model,
|
329 |
vaecall,
|
330 |
lora,
|
331 |
lora_scale,
|
|
|
|
|
332 |
],
|
333 |
outputs=result,
|
334 |
api_name="run",
|
|
|
2 |
|
3 |
from __future__ import annotations
|
4 |
|
5 |
+
import requests
|
6 |
import os
|
7 |
import random
|
8 |
|
9 |
import gradio as gr
|
10 |
import numpy as np
|
|
|
11 |
import spaces
|
12 |
import torch
|
13 |
+
from PIL import Image
|
14 |
+
from io import BytesIO
|
15 |
+
from diffusers import AutoencoderKL, DiffusionPipeline, AutoPipelineForImage2Image
|
16 |
|
17 |
+
DESCRIPTION = "# Run any LoRA or SD Model"
|
18 |
if not torch.cuda.is_available():
|
19 |
+
DESCRIPTION += "\n<p>⚠️ This space is running on the CPU. This demo doesn't work on CPU 😞! Run on a GPU by duplicating this space or test our website for free and unlimited by <a href='https://squaadai.com'>clicking here</a>, which provides these and more options.</p>"
|
20 |
|
21 |
MAX_SEED = np.iinfo(np.int32).max
|
22 |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
|
23 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1824"))
|
24 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
|
25 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
|
|
26 |
ENABLE_USE_LORA = os.getenv("ENABLE_USE_LORA", "1") == "1"
|
27 |
ENABLE_USE_VAE = os.getenv("ENABLE_USE_VAE", "1") == "1"
|
28 |
+
ENABLE_USE_IMG2IMG = os.getenv("ENABLE_USE_VAE", "1") == "1"
|
29 |
|
30 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
31 |
|
|
|
48 |
width: int = 1024,
|
49 |
height: int = 1024,
|
50 |
guidance_scale_base: float = 5.0,
|
|
|
51 |
num_inference_steps_base: int = 25,
|
52 |
+
strength_img2img: float = 0.7,
|
53 |
use_vae: bool = False,
|
54 |
use_lora: bool = False,
|
55 |
+
model = 'stabilityai/stable-diffusion-xl-base-1.0',
|
56 |
+
vaecall = 'madebyollin/sdxl-vae-fp16-fix',
|
57 |
+
lora = '',
|
|
|
58 |
lora_scale: float = 0.7,
|
59 |
+
use_img2img: bool = False,
|
60 |
+
url = '',
|
61 |
+
):
|
62 |
if torch.cuda.is_available():
|
|
|
|
|
|
|
63 |
|
64 |
+
if not use_img2img:
|
65 |
+
pipe = DiffusionPipeline.from_pretrained(model, torch_dtype=torch.float16)
|
66 |
+
|
67 |
+
if use_vae:
|
68 |
+
vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16)
|
69 |
+
pipe = DiffusionPipeline.from_pretrained(model, vae=vae, torch_dtype=torch.float16)
|
70 |
|
71 |
+
if use_img2img:
|
72 |
+
pipe = AutoPipelineForImage2Image.from_pretrained(model, torch_dtype=torch.float16)
|
73 |
+
|
74 |
+
if use_vae:
|
75 |
+
vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16)
|
76 |
+
pipe = AutoPipelineForImage2Image.from_pretrained(model, vae=vae, torch_dtype=torch.float16)
|
77 |
+
|
78 |
+
response = requests.get(url)
|
79 |
+
init_image = Image.open(BytesIO(response.content)).convert("RGB")
|
80 |
+
init_image = init_image.resize((width, height))
|
81 |
+
|
82 |
if use_lora:
|
83 |
pipe.load_lora_weights(lora)
|
84 |
pipe.fuse_lora(lora_scale)
|
|
|
101 |
if not use_negative_prompt_2:
|
102 |
negative_prompt_2 = None # type: ignore
|
103 |
|
104 |
+
if not use_img2img:
|
105 |
return pipe(
|
106 |
prompt=prompt,
|
107 |
negative_prompt=negative_prompt,
|
|
|
115 |
output_type="pil",
|
116 |
).images[0]
|
117 |
else:
|
118 |
+
images = pipe(
|
119 |
prompt=prompt,
|
120 |
+
image=init_image,
|
121 |
+
strength=strength_img2img,
|
122 |
negative_prompt=negative_prompt,
|
123 |
prompt_2=prompt_2,
|
124 |
negative_prompt_2=negative_prompt_2,
|
|
|
127 |
guidance_scale=guidance_scale_base,
|
128 |
num_inference_steps=num_inference_steps_base,
|
129 |
generator=generator,
|
130 |
+
output_type="pil",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
).images[0]
|
132 |
+
return images
|
|
|
133 |
|
134 |
examples = [
|
135 |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
136 |
"An astronaut riding a green horse",
|
137 |
]
|
138 |
|
139 |
+
with gr.Blocks(theme=gr.themes.Soft(), css="style.css") as demo:
|
140 |
+
gr.HTML(
|
141 |
+
"<p><center>📙 For any additional support, join our <a href='https://discord.gg/JprjXpjt9K'>Discord</a></center></p>"
|
|
|
|
|
|
|
142 |
)
|
143 |
+
gr.Markdown(DESCRIPTION, elem_id="description")
|
144 |
with gr.Group():
|
145 |
+
model = gr.Text(label='Model', placeholder='e.g. stabilityai/stable-diffusion-xl-base-1.0')
|
146 |
+
vaecall = gr.Text(label='VAE', placeholder='e.g. madebyollin/sdxl-vae-fp16-fix')
|
147 |
+
lora = gr.Text(label='LoRA', placeholder='e.g. nerijs/pixel-art-xl')
|
148 |
lora_scale = gr.Slider(
|
149 |
+
info="The closer to 1, the more it will resemble LoRA, but errors may be visible.",
|
150 |
label="Lora Scale",
|
151 |
minimum=0.01,
|
152 |
maximum=1,
|
153 |
step=0.01,
|
154 |
value=0.7,
|
155 |
)
|
156 |
+
url = gr.Text(label='URL (Img2Img)', placeholder='e.g https://example.com/image.png')
|
157 |
with gr.Row():
|
158 |
prompt = gr.Text(
|
159 |
+
placeholder="Input prompt",
|
160 |
label="Prompt",
|
161 |
show_label=False,
|
162 |
max_lines=1,
|
|
|
163 |
container=False,
|
164 |
)
|
165 |
run_button = gr.Button("Run", scale=0)
|
166 |
result = gr.Image(label="Result", show_label=False)
|
167 |
with gr.Accordion("Advanced options", open=False):
|
168 |
with gr.Row():
|
169 |
+
use_img2img = gr.Checkbox(label='Use Img2Img', value=False, visible=ENABLE_USE_IMG2IMG)
|
170 |
+
use_vae = gr.Checkbox(label='Use VAE', value=False, visible=ENABLE_USE_VAE)
|
171 |
+
use_lora = gr.Checkbox(label='Use Lora', value=False, visible=ENABLE_USE_LORA)
|
172 |
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False)
|
173 |
use_prompt_2 = gr.Checkbox(label="Use prompt 2", value=False)
|
174 |
use_negative_prompt_2 = gr.Checkbox(label="Use negative prompt 2", value=False)
|
175 |
negative_prompt = gr.Text(
|
176 |
+
placeholder="Input Negative Prompt",
|
177 |
label="Negative prompt",
|
178 |
max_lines=1,
|
|
|
179 |
visible=False,
|
180 |
)
|
181 |
prompt_2 = gr.Text(
|
182 |
+
placeholder="Input Prompt 2",
|
183 |
label="Prompt 2",
|
184 |
max_lines=1,
|
|
|
185 |
visible=False,
|
186 |
)
|
187 |
negative_prompt_2 = gr.Text(
|
188 |
+
placeholder="Input Negative Prompt 2",
|
189 |
label="Negative prompt 2",
|
190 |
max_lines=1,
|
|
|
191 |
visible=False,
|
192 |
)
|
193 |
|
|
|
214 |
step=32,
|
215 |
value=1024,
|
216 |
)
|
217 |
+
|
|
|
|
|
218 |
with gr.Row():
|
219 |
guidance_scale_base = gr.Slider(
|
220 |
+
info="Scale for classifier-free guidance",
|
221 |
+
label="Guidance scale",
|
222 |
minimum=1,
|
223 |
maximum=20,
|
224 |
step=0.1,
|
225 |
value=5.0,
|
226 |
)
|
227 |
+
with gr.Row():
|
228 |
num_inference_steps_base = gr.Slider(
|
229 |
+
info="Number of denoising steps",
|
230 |
+
label="Number of inference steps",
|
231 |
minimum=10,
|
232 |
maximum=100,
|
233 |
step=1,
|
234 |
value=25,
|
235 |
)
|
236 |
+
with gr.Row():
|
237 |
+
strength_img2img = gr.Slider(
|
238 |
+
info="Strength for Img2Img",
|
239 |
+
label="Strength",
|
240 |
+
minimum=0,
|
241 |
+
maximum=1,
|
242 |
+
step=0.01,
|
243 |
+
value=0.7,
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
)
|
245 |
|
246 |
gr.Examples(
|
|
|
286 |
queue=False,
|
287 |
api_name=False,
|
288 |
)
|
289 |
+
use_img2img.change(
|
290 |
fn=lambda x: gr.update(visible=x),
|
291 |
+
inputs=use_img2img,
|
292 |
+
outputs=url,
|
293 |
queue=False,
|
294 |
api_name=False,
|
295 |
)
|
|
|
321 |
width,
|
322 |
height,
|
323 |
guidance_scale_base,
|
|
|
324 |
num_inference_steps_base,
|
325 |
+
strength_img2img,
|
326 |
use_vae,
|
327 |
use_lora,
|
|
|
328 |
model,
|
329 |
vaecall,
|
330 |
lora,
|
331 |
lora_scale,
|
332 |
+
use_img2img,
|
333 |
+
url,
|
334 |
],
|
335 |
outputs=result,
|
336 |
api_name="run",
|