Spaces:
Runtime error
Runtime error
#! /usr/bin/env python | |
import cv2 | |
import numpy as np | |
import scipy.spatial as spatial | |
import logging | |
## 3D Transform | |
def bilinear_interpolate(img, coords): | |
""" Interpolates over every image channel | |
http://en.wikipedia.org/wiki/Bilinear_interpolation | |
:param img: max 3 channel image | |
:param coords: 2 x _m_ array. 1st row = xcoords, 2nd row = ycoords | |
:returns: array of interpolated pixels with same shape as coords | |
""" | |
int_coords = np.int32(coords) | |
x0, y0 = int_coords | |
dx, dy = coords - int_coords | |
# 4 Neighour pixels | |
q11 = img[y0, x0] | |
q21 = img[y0, x0 + 1] | |
q12 = img[y0 + 1, x0] | |
q22 = img[y0 + 1, x0 + 1] | |
btm = q21.T * dx + q11.T * (1 - dx) | |
top = q22.T * dx + q12.T * (1 - dx) | |
inter_pixel = top * dy + btm * (1 - dy) | |
return inter_pixel.T | |
def grid_coordinates(points): | |
""" x,y grid coordinates within the ROI of supplied points | |
:param points: points to generate grid coordinates | |
:returns: array of (x, y) coordinates | |
""" | |
xmin = np.min(points[:, 0]) | |
xmax = np.max(points[:, 0]) + 1 | |
ymin = np.min(points[:, 1]) | |
ymax = np.max(points[:, 1]) + 1 | |
return np.asarray([(x, y) for y in range(ymin, ymax) | |
for x in range(xmin, xmax)], np.uint32) | |
def process_warp(src_img, result_img, tri_affines, dst_points, delaunay): | |
""" | |
Warp each triangle from the src_image only within the | |
ROI of the destination image (points in dst_points). | |
""" | |
roi_coords = grid_coordinates(dst_points) | |
# indices to vertices. -1 if pixel is not in any triangle | |
roi_tri_indices = delaunay.find_simplex(roi_coords) | |
for simplex_index in range(len(delaunay.simplices)): | |
coords = roi_coords[roi_tri_indices == simplex_index] | |
num_coords = len(coords) | |
out_coords = np.dot(tri_affines[simplex_index], | |
np.vstack((coords.T, np.ones(num_coords)))) | |
x, y = coords.T | |
result_img[y, x] = bilinear_interpolate(src_img, out_coords) | |
return None | |
def triangular_affine_matrices(vertices, src_points, dst_points): | |
""" | |
Calculate the affine transformation matrix for each | |
triangle (x,y) vertex from dst_points to src_points | |
:param vertices: array of triplet indices to corners of triangle | |
:param src_points: array of [x, y] points to landmarks for source image | |
:param dst_points: array of [x, y] points to landmarks for destination image | |
:returns: 2 x 3 affine matrix transformation for a triangle | |
""" | |
ones = [1, 1, 1] | |
for tri_indices in vertices: | |
src_tri = np.vstack((src_points[tri_indices, :].T, ones)) | |
dst_tri = np.vstack((dst_points[tri_indices, :].T, ones)) | |
mat = np.dot(src_tri, np.linalg.inv(dst_tri))[:2, :] | |
yield mat | |
def warp_image_3d(src_img, src_points, dst_points, dst_shape, dtype=np.uint8): | |
rows, cols = dst_shape[:2] | |
result_img = np.zeros((rows, cols, 3), dtype=dtype) | |
delaunay = spatial.Delaunay(dst_points) | |
tri_affines = np.asarray(list(triangular_affine_matrices( | |
delaunay.simplices, src_points, dst_points))) | |
process_warp(src_img, result_img, tri_affines, dst_points, delaunay) | |
return result_img | |
## 2D Transform | |
def transformation_from_points(points1, points2): | |
points1 = points1.astype(np.float64) | |
points2 = points2.astype(np.float64) | |
c1 = np.mean(points1, axis=0) | |
c2 = np.mean(points2, axis=0) | |
points1 -= c1 | |
points2 -= c2 | |
s1 = np.std(points1) | |
s2 = np.std(points2) | |
points1 /= s1 | |
points2 /= s2 | |
U, S, Vt = np.linalg.svd(np.dot(points1.T, points2)) | |
R = (np.dot(U, Vt)).T | |
return np.vstack([np.hstack([s2 / s1 * R, | |
(c2.T - np.dot(s2 / s1 * R, c1.T))[:, np.newaxis]]), | |
np.array([[0., 0., 1.]])]) | |
def warp_image_2d(im, M, dshape): | |
output_im = np.zeros(dshape, dtype=im.dtype) | |
cv2.warpAffine(im, | |
M[:2], | |
(dshape[1], dshape[0]), | |
dst=output_im, | |
borderMode=cv2.BORDER_TRANSPARENT, | |
flags=cv2.WARP_INVERSE_MAP) | |
return output_im | |
## Generate Mask | |
def mask_from_points(size, points,erode_flag=1): | |
radius = 10 # kernel size | |
kernel = np.ones((radius, radius), np.uint8) | |
mask = np.zeros(size, np.uint8) | |
cv2.fillConvexPoly(mask, cv2.convexHull(points), 255) | |
if erode_flag: | |
mask = cv2.erode(mask, kernel,iterations=1) | |
return mask | |
## Color Correction | |
def correct_colours(im1, im2, landmarks1): | |
COLOUR_CORRECT_BLUR_FRAC = 0.75 | |
LEFT_EYE_POINTS = list(range(42, 48)) | |
RIGHT_EYE_POINTS = list(range(36, 42)) | |
blur_amount = COLOUR_CORRECT_BLUR_FRAC * np.linalg.norm( | |
np.mean(landmarks1[LEFT_EYE_POINTS], axis=0) - | |
np.mean(landmarks1[RIGHT_EYE_POINTS], axis=0)) | |
blur_amount = int(blur_amount) | |
if blur_amount % 2 == 0: | |
blur_amount += 1 | |
im1_blur = cv2.GaussianBlur(im1, (blur_amount, blur_amount), 0) | |
im2_blur = cv2.GaussianBlur(im2, (blur_amount, blur_amount), 0) | |
# Avoid divide-by-zero errors. | |
im2_blur = im2_blur.astype(int) | |
im2_blur += 128*(im2_blur <= 1) | |
result = im2.astype(np.float64) * im1_blur.astype(np.float64) / im2_blur.astype(np.float64) | |
result = np.clip(result, 0, 255).astype(np.uint8) | |
return result | |
## Copy-and-paste | |
def apply_mask(img, mask): | |
""" Apply mask to supplied image | |
:param img: max 3 channel image | |
:param mask: [0-255] values in mask | |
:returns: new image with mask applied | |
""" | |
masked_img=cv2.bitwise_and(img,img,mask=mask) | |
return masked_img | |
## Alpha blending | |
def alpha_feathering(src_img, dest_img, img_mask, blur_radius=15): | |
mask = cv2.blur(img_mask, (blur_radius, blur_radius)) | |
mask = mask / 255.0 | |
result_img = np.empty(src_img.shape, np.uint8) | |
for i in range(3): | |
result_img[..., i] = src_img[..., i] * mask + dest_img[..., i] * (1-mask) | |
return result_img | |
def check_points(img,points): | |
# Todo: I just consider one situation. | |
if points[8,1]>img.shape[0]: | |
logging.error("Jaw part out of image") | |
else: | |
return True | |
return False | |
def face_swap(src_face, dst_face, src_points, dst_points, dst_shape, dst_img, args, end=48): | |
h, w = dst_face.shape[:2] | |
## 3d warp | |
warped_src_face = warp_image_3d(src_face, src_points[:end], dst_points[:end], (h, w)) | |
## Mask for blending | |
mask = mask_from_points((h, w), dst_points) | |
mask_src = np.mean(warped_src_face, axis=2) > 0 | |
mask = np.asarray(mask * mask_src, dtype=np.uint8) | |
## Correct color | |
if args == "correct color": | |
warped_src_face = apply_mask(warped_src_face, mask) | |
dst_face_masked = apply_mask(dst_face, mask) | |
warped_src_face = correct_colours(dst_face_masked, warped_src_face, dst_points) | |
## 2d warp | |
if args == "warp_2d": | |
unwarped_src_face = warp_image_3d(warped_src_face, dst_points[:end], src_points[:end], src_face.shape[:2]) | |
warped_src_face = warp_image_2d(unwarped_src_face, transformation_from_points(dst_points, src_points), | |
(h, w, 3)) | |
mask = mask_from_points((h, w), dst_points) | |
mask_src = np.mean(warped_src_face, axis=2) > 0 | |
mask = np.asarray(mask * mask_src, dtype=np.uint8) | |
## Shrink the mask | |
kernel = np.ones((10, 10), np.uint8) | |
mask = cv2.erode(mask, kernel, iterations=1) | |
##Poisson Blending | |
r = cv2.boundingRect(mask) | |
center = ((r[0] + int(r[2] / 2), r[1] + int(r[3] / 2))) | |
output = cv2.seamlessClone(warped_src_face, dst_face, mask, center, cv2.NORMAL_CLONE) | |
x, y, w, h = dst_shape | |
dst_img_cp = dst_img.copy() | |
dst_img_cp[y:y + h, x:x + w] = output | |
return dst_img_cp | |