Spaces:
Runtime error
Runtime error
import os | |
import re | |
import torch | |
from pdf2image import convert_from_path | |
from helpers import majority_vote_dicts, limit_pagenumbers | |
from transformers import DonutProcessor, VisionEncoderDecoderModel | |
os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
model_name = "harish3110/donut-quandri-all-data" | |
processor = DonutProcessor.from_pretrained(model_name) | |
model = VisionEncoderDecoderModel.from_pretrained(model_name) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model.to(device) | |
def process_pdf(pdf_file, cut_off=20): | |
limit_pagenumbers(pdf_file.name) | |
images = convert_from_path(pdf_file.name) | |
results = [] | |
# cut pdf to 20 pages | |
if len(images) > cut_off: | |
images = images[:cut_off] | |
for image in images: | |
result = process_document(image) | |
results.append(result) | |
return majority_vote_dicts(results) | |
def process_document(image): | |
# prepare encoder inputs | |
pixel_values = processor(image, return_tensors="pt").pixel_values | |
# prepare decoder inputs | |
task_prompt = "<s_cord-v2>" | |
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids | |
# generate answer | |
outputs = model.generate( | |
pixel_values.to(device), | |
decoder_input_ids=decoder_input_ids.to(device), | |
max_length=model.decoder.config.max_position_embeddings, | |
early_stopping=True, | |
pad_token_id=processor.tokenizer.pad_token_id, | |
eos_token_id=processor.tokenizer.eos_token_id, | |
use_cache=True, | |
num_beams=1, | |
bad_words_ids=[[processor.tokenizer.unk_token_id]], | |
return_dict_in_generate=True, | |
) | |
# postprocess | |
sequence = processor.batch_decode(outputs.sequences)[0] | |
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") | |
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token | |
return processor.token2json(sequence) |