harish3110's picture
Added code to take pdf as an input
854b899
raw
history blame
2 kB
import os
import re
import torch
from pdf2image import convert_from_path
from helpers import majority_vote_dicts, limit_pagenumbers
from transformers import DonutProcessor, VisionEncoderDecoderModel
os.environ["TOKENIZERS_PARALLELISM"] = "false"
model_name = "harish3110/donut-quandri-all-data"
processor = DonutProcessor.from_pretrained(model_name)
model = VisionEncoderDecoderModel.from_pretrained(model_name)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
def process_pdf(pdf_file, cut_off=20):
limit_pagenumbers(pdf_file.name)
images = convert_from_path(pdf_file.name)
results = []
# cut pdf to 20 pages
if len(images) > cut_off:
images = images[:cut_off]
for image in images:
result = process_document(image)
results.append(result)
return majority_vote_dicts(results)
def process_document(image):
# prepare encoder inputs
pixel_values = processor(image, return_tensors="pt").pixel_values
# prepare decoder inputs
task_prompt = "<s_cord-v2>"
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
# generate answer
outputs = model.generate(
pixel_values.to(device),
decoder_input_ids=decoder_input_ids.to(device),
max_length=model.decoder.config.max_position_embeddings,
early_stopping=True,
pad_token_id=processor.tokenizer.pad_token_id,
eos_token_id=processor.tokenizer.eos_token_id,
use_cache=True,
num_beams=1,
bad_words_ids=[[processor.tokenizer.unk_token_id]],
return_dict_in_generate=True,
)
# postprocess
sequence = processor.batch_decode(outputs.sequences)[0]
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
return processor.token2json(sequence)