Spaces:
Running
A newer version of the Gradio SDK is available:
5.22.0
SwarmNetwork [WIP]
The SwarmNetwork
class is a powerful tool for managing a pool of agents, orchestrating task distribution, and scaling resources based on workload. It is designed to handle tasks efficiently by dynamically adjusting the number of agents according to the current demand. This class also provides an optional API for interacting with the agent pool, making it accessible for integration with other systems.
Key Features
- Agent Pool Management: Dynamically manage a pool of agents.
- Task Queue Management: Handle tasks through a queue system.
- Agent Health Monitoring: Monitor the health of agents.
- Agent Pool Scaling: Scale the agent pool up or down based on workload.
- API: Interact with the agent pool and task queue through a simple API.
- Agent Deployment Options: Run agents on threads, processes, containers, machines, or clusters.
Parameters
Parameter | Type | Default Value | Description |
---|---|---|---|
name | str | None | The name of the swarm network. |
description | str | None | A description of the swarm network. |
agents | List[Agent] | None | A list of agents in the pool. |
idle_threshold | float | 0.2 | The idle threshold for the agents. |
busy_threshold | float | 0.7 | The busy threshold for the agents. |
api_enabled | Optional[bool] | False | A flag to enable/disable the API. |
logging_enabled | Optional[bool] | False | A flag to enable/disable logging. |
api_on | Optional[bool] | False | A flag to enable/disable the FastAPI instance. |
host | str | "0.0.0.0" | The host address for the FastAPI instance. |
port | int | 8000 | The port number for the FastAPI instance. |
swarm_callable | Optional[callable] | None | A callable to be executed by the swarm network. |
*args | tuple | Additional positional arguments. | |
**kwargs | dict | Additional keyword arguments. |
Attributes
Attribute | Type | Description |
---|---|---|
task_queue | queue.Queue | A queue for storing tasks. |
idle_threshold | float | The idle threshold for the agents. |
busy_threshold | float | The busy threshold for the agents. |
agents | List[Agent] | A list of agents in the pool. |
api_enabled | bool | A flag to enable/disable the API. |
logging_enabled | bool | A flag to enable/disable logging. |
host | str | The host address for the FastAPI instance. |
port | int | The port number for the FastAPI instance. |
swarm_callable | Optional[callable] | A callable to be executed by the swarm network. |
agent_dict | dict | A dictionary of agents for easy access. |
lock | threading.Lock | A lock for synchronizing access to shared resources. |
Methods
Description
Initializes a new instance of the SwarmNetwork
class.
Parameters
name
(str): The name of the swarm network.description
(str): A description of the swarm network.agents
(List[Agent]): A list of agents in the pool.idle_threshold
(float): The idle threshold for the agents.busy_threshold
(float): The busy threshold for the agents.api_enabled
(Optional[bool]): A flag to enable/disable the API.logging_enabled
(Optional[bool]): A flag to enable/disable logging.api_on
(Optional[bool]): A flag to enable/disable the FastAPI instance.host
(str): The host address for the FastAPI instance.port
(int): The port number for the FastAPI instance.swarm_callable
(Optional[callable]): A callable to be executed by the swarm network.*args
: Additional positional arguments.**kwargs
: Additional keyword arguments.
add_task
def add_task(self, task)
Description
Adds a task to the task queue.
Parameters
task
(type): The task to be added to the queue.
Example
from swarms.structs.agent import Agent
from swarms.structs.swarm_net import SwarmNetwork
agent = Agent()
swarm = SwarmNetwork(agents=[agent])
swarm.add_task("task")
async_add_task
async def async_add_task(self, task)
Description
Adds a task to the task queue asynchronously.
Parameters
task
(type): The task to be added to the queue.
Example
from swarms.structs.agent import Agent
from swarms.structs.swarm_net import SwarmNetwork
agent = Agent()
swarm = SwarmNetwork(agents=[agent])
await swarm.async_add_task("task")
run_single_agent
def run_single_agent(self, agent_id, task: Optional[str], *args, **kwargs)
Description
Runs a task on a specific agent by ID.
Parameters
agent_id
(type): The ID of the agent.task
(str, optional): The task to be executed by the agent.*args
: Additional positional arguments.**kwargs
: Additional keyword arguments.
Returns
_type_
: The output of the agent running the task.
Example
from swarms.structs.agent import Agent
from swarms.structs.swarm_net import SwarmNetwork
# Initialize the agent
agent = Agent(
agent_name="Financial-Analysis-Agent",
llm=model,
max_loops="auto",
autosave=True,
dashboard=False,
verbose=True,
streaming_on=True,
interactive=True,
# interactive=True, # Set to False to disable interactive mode
saved_state_path="finance_agent.json",
# tools=[Add your functions here# ],
# stopping_token="Stop!",
# interactive=True,
# docs_folder="docs", # Enter your folder name
# pdf_path="docs/finance_agent.pdf",
# sop="Calculate the profit for a company.",
# sop_list=["Calculate the profit for a company."],
user_name="swarms_corp",
# # docs=
# # docs_folder="docs",
retry_attempts=3,
# context_length=1000,
# tool_schema = dict
context_length=200000,
# agent_ops_on=True,
# long_term_memory=ChromaDB(docs_folder="artifacts"),
)
swarm = SwarmNetwork(agents=[agent])
result = swarm.run_single_agent(agent.id, "task")
run_many_agents
def run_many_agents(self, task: Optional[str] = None, *args, **kwargs) -> List
Description
Runs a task on all agents in the pool.
Parameters
task
(str, optional): The task to be executed by the agents.*args
: Additional positional arguments.**kwargs
: Additional keyword arguments.
Returns
List
: The output of all agents running the task.
Example
from swarms.structs.agent import Agent
from swarms.structs.swarm_net import SwarmNetwork
# Initialize the agent
agent = Agent(
agent_name="Financial-Analysis-Agent",
system_prompt=ESTATE_PLANNING_AGENT_SYS_PROMPT,
llm=model,
max_loops="auto",
autosave=True,
dashboard=False,
verbose=True,
streaming_on=True,
interactive=True,
# interactive=True, # Set to False to disable interactive mode
saved_state_path="finance_agent.json",
# tools=[Add your functions here# ],
# stopping_token="Stop!",
# interactive=True,
# docs_folder="docs", # Enter your folder name
# pdf_path="docs/finance_agent.pdf",
# sop="Calculate the profit for a company.",
# sop_list=["Calculate the profit for a company."],
user_name="swarms_corp",
# # docs=
# # docs_folder="docs",
retry_attempts=3,
# context_length=1000,
# tool_schema = dict
context_length=200000,
# agent_ops_on=True,
# long_term_memory=ChromaDB(docs_folder="artifacts"),
)
# Initialize the agent
agent2 = Agent(
agent_name="ROTH-IRA-AGENT",
system_prompt=ESTATE_PLANNING_AGENT_SYS_PROMPT,
llm=model,
max_loops="auto",
autosave=True,
dashboard=False,
verbose=True,
streaming_on=True,
interactive=True,
# interactive=True, # Set to False to disable interactive mode
saved_state_path="finance_agent.json",
# tools=[Add your functions here# ],
# stopping_token="Stop!",
# interactive=True,
# docs_folder="docs", # Enter your folder name
# pdf_path="docs/finance_agent.pdf",
# sop="Calculate the profit for a company.",
# sop_list=["Calculate the profit for a company."],
user_name="swarms_corp",
# # docs=
# # docs_folder="docs",
retry_attempts=3,
# context_length=1000,
# tool_schema = dict
context_length=200000,
# agent_ops_on=True,
# long_term_memory=ChromaDB(docs_folder="artifacts"),
)
swarm = SwarmNetwork(agents=[agent1, agent2])
results = swarm.run_many_agents("task")
list_agents
def list_agents(self)
Description
Lists all agents in the pool.
Example
from swarms.structs.agent import Agent
from swarms.structs.swarm_net import SwarmNetwork
# Initialize the agent
agent2 = Agent(
agent_name="ROTH-IRA-AGENT",
system_prompt=ESTATE_PLANNING_AGENT_SYS_PROMPT,
llm=model,
max_loops="auto",
autosave=True,
dashboard=False,
verbose=True,
streaming_on=True,
interactive=True,
# interactive=True, # Set to False to disable interactive mode
saved_state_path="finance_agent.json",
# tools=[Add your functions here# ],
# stopping_token="Stop!",
# interactive=True,
# docs_folder="docs", # Enter your folder name
# pdf_path="docs/finance_agent.pdf",
# sop="Calculate the profit for a company.",
# sop_list=["Calculate the profit for a company."],
user_name="swarms_corp",
# # docs=
# # docs_folder="docs",
retry_attempts=3,
# context_length=1000,
# tool_schema = dict
context_length=200000,
# agent_ops_on=True,
# long_term_memory=ChromaDB(docs_folder="artifacts"),
)
swarm = SwarmNetwork(agents=[agent])
swarm.list_agents()
get_agent
def get_agent(self, agent_id)
Description
Gets an agent by ID.
Parameters
agent_id
(type): The ID of the agent to retrieve.
Returns
_type_
: The agent with the specified ID.
Example
from swarms.structs.agent import Agent
from swarms.structs.swarm_net import SwarmNetwork
# Initialize the agent
agent2 = Agent(
agent_name="ROTH-IRA-AGENT",
system_prompt=ESTATE_PLANNING_AGENT_SYS_PROMPT,
llm=model,
max_loops="auto",
autosave=True,
dashboard=False,
verbose=True,
streaming_on=True,
interactive=True,
# interactive=True, # Set to False to disable interactive mode
saved_state_path="finance_agent.json",
# tools=[Add your functions here# ],
# stopping_token="Stop!",
# interactive=True,
# docs_folder="docs", # Enter your folder name
# pdf_path="docs/finance_agent.pdf",
# sop="Calculate the profit for a company.",
# sop_list=["Calculate the profit for a company."],
user_name="swarms_corp",
# # docs=
# # docs_folder="docs",
retry_attempts=3,
# context_length=1000,
# tool_schema = dict
context_length=200000,
# agent_ops_on=True,
# long_term_memory=ChromaDB(docs_folder="artifacts"),
)
swarm = SwarmNetwork(agents=[agent])
retrieved_agent = swarm.get_agent(agent.id)
add_agent
def add_agent(self, agent: Agent)
Description
Adds an agent to the agent pool.
Parameters
agent
(type): The agent to be added to the pool.
Example
from swarms.structs.agent import Agent
from swarms.structs.swarm_net import SwarmNetwork
# Initialize the agent
agent2 = Agent(
agent_name="ROTH-IRA-AGENT",
system_prompt=ESTATE_PLANNING_AGENT_SYS_PROMPT,
llm=model,
max_loops="auto",
autosave=True,
dashboard=False,
verbose=True,
streaming_on=True,
interactive=True,
# interactive=True, # Set to False to disable interactive mode
saved_state_path="finance_agent.json",
# tools=[Add your functions here# ],
# stopping_token="Stop!",
# interactive=True,
# docs_folder="docs", # Enter your folder name
# pdf_path="docs/finance_agent.pdf",
# sop="Calculate the profit for a company.",
# sop_list=["Calculate the profit for a company."],
user_name="swarms_corp",
# # docs=
# # docs_folder="docs",
retry_attempts=3,
# context_length=1000,
# tool_schema = dict
context_length=200000,
# agent_ops_on=True,
# long_term_memory=ChromaDB(docs_folder="artifacts"),
)
swarm = SwarmNetwork(agents=[])
swarm.add_agent(agent)
remove_agent
def remove_agent(self, agent_id)
Description
Removes an agent from the agent pool.
Parameters
agent_id
(type): The ID of the agent to be removed.
Example
from swarms.structs.agent import Agent
from swarms.structs.swarm_net import SwarmNetwork
# Initialize the agent
agent2 = Agent(
agent_name="ROTH-IRA-AGENT",
system_prompt=ESTATE_PLANNING_AGENT_SYS_PROMPT,
llm=model,
max_loops="auto",
autosave=True,
dashboard=False,
verbose=True,
streaming_on=True,
interactive=True,
# interactive=True, # Set to False to disable interactive mode
saved_state_path="finance_agent.json",
# tools=[Add your functions here# ],
# stopping_token="Stop!",
# interactive=True,
# docs_folder="docs", # Enter your folder name
# pdf_path="docs/finance_agent.pdf",
# sop="Calculate the profit for a company.",
# sop_list=["Calculate the profit for a company."],
user_name="swarms_corp",
# # docs=
# # docs_folder="docs",
retry_attempts=3,
# context_length=1000,
# tool_schema = dict
context_length=200000,
# agent_ops_on=True,
# long_term_memory=ChromaDB(docs_folder="artifacts"),
)
swarm = SwarmNetwork(agents=[agent])
swarm.remove_agent(agent.id)
`
async_remove_agent`
async def async_remove_agent(self, agent_id)
Description
Removes an agent from the agent pool asynchronously.
Parameters
agent_id
(type): The ID of the agent to be removed.
Example
from swarms.structs.agent import Agent
from swarms.structs.swarm_net import SwarmNetwork
# Initialize the agent
agent2 = Agent(
agent_name="ROTH-IRA-AGENT",
system_prompt=ESTATE_PLANNING_AGENT_SYS_PROMPT,
llm=model,
max_loops="auto",
autosave=True,
dashboard=False,
verbose=True,
streaming_on=True,
interactive=True,
# interactive=True, # Set to False to disable interactive mode
saved_state_path="finance_agent.json",
# tools=[Add your functions here# ],
# stopping_token="Stop!",
# interactive=True,
# docs_folder="docs", # Enter your folder name
# pdf_path="docs/finance_agent.pdf",
# sop="Calculate the profit for a company.",
# sop_list=["Calculate the profit for a company."],
user_name="swarms_corp",
# # docs=
# # docs_folder="docs",
retry_attempts=3,
# context_length=1000,
# tool_schema = dict
context_length=200000,
# agent_ops_on=True,
# long_term_memory=ChromaDB(docs_folder="artifacts"),
)
swarm = SwarmNetwork(agents=[agent])
await swarm.async_remove_agent(agent.id)
scale_up
def scale_up(self, num_agents: int = 1)
Description
Scales up the agent pool by adding new agents.
Parameters
num_agents
(int, optional): The number of agents to add. Defaults to 1.
Example
from swarms.structs.agent import Agent
from swarms.structs.swarm_net import SwarmNetwork
# Initialize the agent
agent2 = Agent(
agent_name="ROTH-IRA-AGENT",
system_prompt=ESTATE_PLANNING_AGENT_SYS_PROMPT,
llm=model,
max_loops="auto",
autosave=True,
dashboard=False,
verbose=True,
streaming_on=True,
interactive=True,
# interactive=True, # Set to False to disable interactive mode
saved_state_path="finance_agent.json",
# tools=[Add your functions here# ],
# stopping_token="Stop!",
# interactive=True,
# docs_folder="docs", # Enter your folder name
# pdf_path="docs/finance_agent.pdf",
# sop="Calculate the profit for a company.",
# sop_list=["Calculate the profit for a company."],
user_name="swarms_corp",
# # docs=
# # docs_folder="docs",
retry_attempts=3,
# context_length=1000,
# tool_schema = dict
context_length=200000,
# agent_ops_on=True,
# long_term_memory=ChromaDB(docs_folder="artifacts"),
)
swarm = SwarmNetwork(agents=[agent])
swarm.scale_up(2)
scale_down
def scale_down(self, num_agents: int = 1)
Description
Scales down the agent pool by removing agents.
Parameters
num_agents
(int, optional): The number of agents to remove. Defaults to 1.
Example
from swarms.structs.agent import Agent
from swarms.structs.swarm_net import SwarmNetwork
# Initialize the agent
agent2 = Agent(
agent_name="ROTH-IRA-AGENT",
system_prompt=ESTATE_PLANNING_AGENT_SYS_PROMPT,
llm=model,
max_loops="auto",
autosave=True,
dashboard=False,
verbose=True,
streaming_on=True,
interactive=True,
# interactive=True, # Set to False to disable interactive mode
saved_state_path="finance_agent.json",
# tools=[Add your functions here# ],
# stopping_token="Stop!",
# interactive=True,
# docs_folder="docs", # Enter your folder name
# pdf_path="docs/finance_agent.pdf",
# sop="Calculate the profit for a company.",
# sop_list=["Calculate the profit for a company."],
user_name="swarms_corp",
# # docs=
# # docs_folder="docs",
retry_attempts=3,
# context_length=1000,
# tool_schema = dict
context_length=200000,
# agent_ops_on=True,
# long_term_memory=ChromaDB(docs_folder="artifacts"),
)
swarm = SwarmNetwork(agents=[agent])
swarm.scale_down(1)
run
Description
Runs the swarm network, starting the FastAPI application.
Example
import os
from dotenv import load_dotenv
# Import the OpenAIChat model and the Agent struct
from swarms import Agent, OpenAIChat, SwarmNetwork
# Load the environment variables
load_dotenv()
# Get the API key from the environment
api_key = os.environ.get("OPENAI_API_KEY")
# Initialize the language model
llm = OpenAIChat(
temperature=0.5,
openai_api_key=api_key,
)
## Initialize the workflow
agent = Agent(llm=llm, max_loops=1, agent_name="Social Media Manager")
agent2 = Agent(llm=llm, max_loops=1, agent_name=" Product Manager")
agent3 = Agent(llm=llm, max_loops=1, agent_name="SEO Manager")
# Load the swarmnet with the agents
swarmnet = SwarmNetwork(
agents=[agent, agent2, agent3],
)
# List the agents in the swarm network
out = swarmnet.list_agents()
print(out)
# Run the workflow on a task
out = swarmnet.run_single_agent(
agent2.id, "Generate a 10,000 word blog on health and wellness."
)
print(out)
# Run all the agents in the swarm network on a task
out = swarmnet.run_many_agents("Generate a 10,000 word blog on health and wellness.")
print(out)
Additional Information and Tips
- Error Handling: Make use of try-except blocks to handle potential errors when adding tasks, running tasks, and managing agents.
- Logging: Enable logging to track the activity and status of the swarm network.
- API: The provided API allows for easy interaction with the swarm network and can be extended as needed.
- Asynchronous Operations: Utilize the asynchronous methods for non-blocking operations, especially in a production environment.
- Scaling: Adjust the scaling thresholds (
idle_threshold
andbusy_threshold
) based on the specific needs and workload patterns.
References and Resources
By following this documentation, users can effectively manage and utilize the SwarmNetwork
class to handle dynamic workloads and maintain an efficient pool of agents.