|
|
|
|
|
import re |
|
|
|
import matplotlib.image as mpimg |
|
import matplotlib.pyplot as plt |
|
|
|
from ultralytics.yolo.utils import LOGGER, TESTS_RUNNING |
|
from ultralytics.yolo.utils.torch_utils import model_info_for_loggers |
|
|
|
try: |
|
import clearml |
|
from clearml import Task |
|
from clearml.binding.frameworks.pytorch_bind import PatchPyTorchModelIO |
|
from clearml.binding.matplotlib_bind import PatchedMatplotlib |
|
|
|
assert hasattr(clearml, '__version__') |
|
assert not TESTS_RUNNING |
|
except (ImportError, AssertionError): |
|
clearml = None |
|
|
|
|
|
def _log_debug_samples(files, title='Debug Samples') -> None: |
|
""" |
|
Log files (images) as debug samples in the ClearML task. |
|
|
|
Args: |
|
files (list): A list of file paths in PosixPath format. |
|
title (str): A title that groups together images with the same values. |
|
""" |
|
task = Task.current_task() |
|
if task: |
|
for f in files: |
|
if f.exists(): |
|
it = re.search(r'_batch(\d+)', f.name) |
|
iteration = int(it.groups()[0]) if it else 0 |
|
task.get_logger().report_image(title=title, |
|
series=f.name.replace(it.group(), ''), |
|
local_path=str(f), |
|
iteration=iteration) |
|
|
|
|
|
def _log_plot(title, plot_path) -> None: |
|
""" |
|
Log an image as a plot in the plot section of ClearML. |
|
|
|
Args: |
|
title (str): The title of the plot. |
|
plot_path (str): The path to the saved image file. |
|
""" |
|
img = mpimg.imread(plot_path) |
|
fig = plt.figure() |
|
ax = fig.add_axes([0, 0, 1, 1], frameon=False, aspect='auto', xticks=[], yticks=[]) |
|
ax.imshow(img) |
|
|
|
Task.current_task().get_logger().report_matplotlib_figure(title=title, |
|
series='', |
|
figure=fig, |
|
report_interactive=False) |
|
|
|
|
|
def on_pretrain_routine_start(trainer): |
|
"""Runs at start of pretraining routine; initializes and connects/ logs task to ClearML.""" |
|
try: |
|
task = Task.current_task() |
|
if task: |
|
|
|
|
|
PatchPyTorchModelIO.update_current_task(None) |
|
PatchedMatplotlib.update_current_task(None) |
|
else: |
|
task = Task.init(project_name=trainer.args.project or 'YOLOv8', |
|
task_name=trainer.args.name, |
|
tags=['YOLOv8'], |
|
output_uri=True, |
|
reuse_last_task_id=False, |
|
auto_connect_frameworks={ |
|
'pytorch': False, |
|
'matplotlib': False}) |
|
LOGGER.warning('ClearML Initialized a new task. If you want to run remotely, ' |
|
'please add clearml-init and connect your arguments before initializing YOLO.') |
|
task.connect(vars(trainer.args), name='General') |
|
except Exception as e: |
|
LOGGER.warning(f'WARNING ⚠️ ClearML installed but not initialized correctly, not logging this run. {e}') |
|
|
|
|
|
def on_train_epoch_end(trainer): |
|
task = Task.current_task() |
|
|
|
if task: |
|
"""Logs debug samples for the first epoch of YOLO training.""" |
|
if trainer.epoch == 1: |
|
_log_debug_samples(sorted(trainer.save_dir.glob('train_batch*.jpg')), 'Mosaic') |
|
"""Report the current training progress.""" |
|
for k, v in trainer.validator.metrics.results_dict.items(): |
|
task.get_logger().report_scalar('train', k, v, iteration=trainer.epoch) |
|
|
|
|
|
def on_fit_epoch_end(trainer): |
|
"""Reports model information to logger at the end of an epoch.""" |
|
task = Task.current_task() |
|
if task: |
|
|
|
task.get_logger().report_scalar(title='Epoch Time', |
|
series='Epoch Time', |
|
value=trainer.epoch_time, |
|
iteration=trainer.epoch) |
|
if trainer.epoch == 0: |
|
for k, v in model_info_for_loggers(trainer).items(): |
|
task.get_logger().report_single_value(k, v) |
|
|
|
|
|
def on_val_end(validator): |
|
"""Logs validation results including labels and predictions.""" |
|
if Task.current_task(): |
|
|
|
_log_debug_samples(sorted(validator.save_dir.glob('val*.jpg')), 'Validation') |
|
|
|
|
|
def on_train_end(trainer): |
|
"""Logs final model and its name on training completion.""" |
|
task = Task.current_task() |
|
if task: |
|
|
|
files = [ |
|
'results.png', 'confusion_matrix.png', 'confusion_matrix_normalized.png', |
|
*(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))] |
|
files = [(trainer.save_dir / f) for f in files if (trainer.save_dir / f).exists()] |
|
for f in files: |
|
_log_plot(title=f.stem, plot_path=f) |
|
|
|
for k, v in trainer.validator.metrics.results_dict.items(): |
|
task.get_logger().report_single_value(k, v) |
|
|
|
task.update_output_model(model_path=str(trainer.best), model_name=trainer.args.name, auto_delete_file=False) |
|
|
|
|
|
callbacks = { |
|
'on_pretrain_routine_start': on_pretrain_routine_start, |
|
'on_train_epoch_end': on_train_epoch_end, |
|
'on_fit_epoch_end': on_fit_epoch_end, |
|
'on_val_end': on_val_end, |
|
'on_train_end': on_train_end} if clearml else {} |
|
|