|
|
|
|
|
from collections import abc |
|
from itertools import repeat |
|
from numbers import Number |
|
from typing import List |
|
|
|
import numpy as np |
|
|
|
from .ops import ltwh2xywh, ltwh2xyxy, resample_segments, xywh2ltwh, xywh2xyxy, xyxy2ltwh, xyxy2xywh |
|
|
|
|
|
def _ntuple(n): |
|
"""From PyTorch internals.""" |
|
|
|
def parse(x): |
|
"""Parse bounding boxes format between XYWH and LTWH.""" |
|
return x if isinstance(x, abc.Iterable) else tuple(repeat(x, n)) |
|
|
|
return parse |
|
|
|
|
|
to_4tuple = _ntuple(4) |
|
|
|
|
|
|
|
|
|
_formats = ['xyxy', 'xywh', 'ltwh'] |
|
|
|
__all__ = 'Bboxes', |
|
|
|
|
|
class Bboxes: |
|
"""Now only numpy is supported.""" |
|
|
|
def __init__(self, bboxes, format='xyxy') -> None: |
|
assert format in _formats, f'Invalid bounding box format: {format}, format must be one of {_formats}' |
|
bboxes = bboxes[None, :] if bboxes.ndim == 1 else bboxes |
|
assert bboxes.ndim == 2 |
|
assert bboxes.shape[1] == 4 |
|
self.bboxes = bboxes |
|
self.format = format |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def convert(self, format): |
|
"""Converts bounding box format from one type to another.""" |
|
assert format in _formats, f'Invalid bounding box format: {format}, format must be one of {_formats}' |
|
if self.format == format: |
|
return |
|
elif self.format == 'xyxy': |
|
bboxes = xyxy2xywh(self.bboxes) if format == 'xywh' else xyxy2ltwh(self.bboxes) |
|
elif self.format == 'xywh': |
|
bboxes = xywh2xyxy(self.bboxes) if format == 'xyxy' else xywh2ltwh(self.bboxes) |
|
else: |
|
bboxes = ltwh2xyxy(self.bboxes) if format == 'xyxy' else ltwh2xywh(self.bboxes) |
|
self.bboxes = bboxes |
|
self.format = format |
|
|
|
def areas(self): |
|
"""Return box areas.""" |
|
self.convert('xyxy') |
|
return (self.bboxes[:, 2] - self.bboxes[:, 0]) * (self.bboxes[:, 3] - self.bboxes[:, 1]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def mul(self, scale): |
|
""" |
|
Args: |
|
scale (tuple) or (list) or (int): the scale for four coords. |
|
""" |
|
if isinstance(scale, Number): |
|
scale = to_4tuple(scale) |
|
assert isinstance(scale, (tuple, list)) |
|
assert len(scale) == 4 |
|
self.bboxes[:, 0] *= scale[0] |
|
self.bboxes[:, 1] *= scale[1] |
|
self.bboxes[:, 2] *= scale[2] |
|
self.bboxes[:, 3] *= scale[3] |
|
|
|
def add(self, offset): |
|
""" |
|
Args: |
|
offset (tuple) or (list) or (int): the offset for four coords. |
|
""" |
|
if isinstance(offset, Number): |
|
offset = to_4tuple(offset) |
|
assert isinstance(offset, (tuple, list)) |
|
assert len(offset) == 4 |
|
self.bboxes[:, 0] += offset[0] |
|
self.bboxes[:, 1] += offset[1] |
|
self.bboxes[:, 2] += offset[2] |
|
self.bboxes[:, 3] += offset[3] |
|
|
|
def __len__(self): |
|
"""Return the number of boxes.""" |
|
return len(self.bboxes) |
|
|
|
@classmethod |
|
def concatenate(cls, boxes_list: List['Bboxes'], axis=0) -> 'Bboxes': |
|
""" |
|
Concatenate a list of Bboxes objects into a single Bboxes object. |
|
|
|
Args: |
|
boxes_list (List[Bboxes]): A list of Bboxes objects to concatenate. |
|
axis (int, optional): The axis along which to concatenate the bounding boxes. |
|
Defaults to 0. |
|
|
|
Returns: |
|
Bboxes: A new Bboxes object containing the concatenated bounding boxes. |
|
|
|
Note: |
|
The input should be a list or tuple of Bboxes objects. |
|
""" |
|
assert isinstance(boxes_list, (list, tuple)) |
|
if not boxes_list: |
|
return cls(np.empty(0)) |
|
assert all(isinstance(box, Bboxes) for box in boxes_list) |
|
|
|
if len(boxes_list) == 1: |
|
return boxes_list[0] |
|
return cls(np.concatenate([b.bboxes for b in boxes_list], axis=axis)) |
|
|
|
def __getitem__(self, index) -> 'Bboxes': |
|
""" |
|
Retrieve a specific bounding box or a set of bounding boxes using indexing. |
|
|
|
Args: |
|
index (int, slice, or np.ndarray): The index, slice, or boolean array to select |
|
the desired bounding boxes. |
|
|
|
Returns: |
|
Bboxes: A new Bboxes object containing the selected bounding boxes. |
|
|
|
Raises: |
|
AssertionError: If the indexed bounding boxes do not form a 2-dimensional matrix. |
|
|
|
Note: |
|
When using boolean indexing, make sure to provide a boolean array with the same |
|
length as the number of bounding boxes. |
|
""" |
|
if isinstance(index, int): |
|
return Bboxes(self.bboxes[index].view(1, -1)) |
|
b = self.bboxes[index] |
|
assert b.ndim == 2, f'Indexing on Bboxes with {index} failed to return a matrix!' |
|
return Bboxes(b) |
|
|
|
|
|
class Instances: |
|
|
|
def __init__(self, bboxes, segments=None, keypoints=None, bbox_format='xywh', normalized=True) -> None: |
|
""" |
|
Args: |
|
bboxes (ndarray): bboxes with shape [N, 4]. |
|
segments (list | ndarray): segments. |
|
keypoints (ndarray): keypoints(x, y, visible) with shape [N, 17, 3]. |
|
""" |
|
if segments is None: |
|
segments = [] |
|
self._bboxes = Bboxes(bboxes=bboxes, format=bbox_format) |
|
self.keypoints = keypoints |
|
self.normalized = normalized |
|
|
|
if len(segments) > 0: |
|
|
|
segments = resample_segments(segments) |
|
|
|
segments = np.stack(segments, axis=0) |
|
else: |
|
segments = np.zeros((0, 1000, 2), dtype=np.float32) |
|
self.segments = segments |
|
|
|
def convert_bbox(self, format): |
|
"""Convert bounding box format.""" |
|
self._bboxes.convert(format=format) |
|
|
|
def bbox_areas(self): |
|
"""Calculate the area of bounding boxes.""" |
|
self._bboxes.areas() |
|
|
|
def scale(self, scale_w, scale_h, bbox_only=False): |
|
"""this might be similar with denormalize func but without normalized sign.""" |
|
self._bboxes.mul(scale=(scale_w, scale_h, scale_w, scale_h)) |
|
if bbox_only: |
|
return |
|
self.segments[..., 0] *= scale_w |
|
self.segments[..., 1] *= scale_h |
|
if self.keypoints is not None: |
|
self.keypoints[..., 0] *= scale_w |
|
self.keypoints[..., 1] *= scale_h |
|
|
|
def denormalize(self, w, h): |
|
"""Denormalizes boxes, segments, and keypoints from normalized coordinates.""" |
|
if not self.normalized: |
|
return |
|
self._bboxes.mul(scale=(w, h, w, h)) |
|
self.segments[..., 0] *= w |
|
self.segments[..., 1] *= h |
|
if self.keypoints is not None: |
|
self.keypoints[..., 0] *= w |
|
self.keypoints[..., 1] *= h |
|
self.normalized = False |
|
|
|
def normalize(self, w, h): |
|
"""Normalize bounding boxes, segments, and keypoints to image dimensions.""" |
|
if self.normalized: |
|
return |
|
self._bboxes.mul(scale=(1 / w, 1 / h, 1 / w, 1 / h)) |
|
self.segments[..., 0] /= w |
|
self.segments[..., 1] /= h |
|
if self.keypoints is not None: |
|
self.keypoints[..., 0] /= w |
|
self.keypoints[..., 1] /= h |
|
self.normalized = True |
|
|
|
def add_padding(self, padw, padh): |
|
"""Handle rect and mosaic situation.""" |
|
assert not self.normalized, 'you should add padding with absolute coordinates.' |
|
self._bboxes.add(offset=(padw, padh, padw, padh)) |
|
self.segments[..., 0] += padw |
|
self.segments[..., 1] += padh |
|
if self.keypoints is not None: |
|
self.keypoints[..., 0] += padw |
|
self.keypoints[..., 1] += padh |
|
|
|
def __getitem__(self, index) -> 'Instances': |
|
""" |
|
Retrieve a specific instance or a set of instances using indexing. |
|
|
|
Args: |
|
index (int, slice, or np.ndarray): The index, slice, or boolean array to select |
|
the desired instances. |
|
|
|
Returns: |
|
Instances: A new Instances object containing the selected bounding boxes, |
|
segments, and keypoints if present. |
|
|
|
Note: |
|
When using boolean indexing, make sure to provide a boolean array with the same |
|
length as the number of instances. |
|
""" |
|
segments = self.segments[index] if len(self.segments) else self.segments |
|
keypoints = self.keypoints[index] if self.keypoints is not None else None |
|
bboxes = self.bboxes[index] |
|
bbox_format = self._bboxes.format |
|
return Instances( |
|
bboxes=bboxes, |
|
segments=segments, |
|
keypoints=keypoints, |
|
bbox_format=bbox_format, |
|
normalized=self.normalized, |
|
) |
|
|
|
def flipud(self, h): |
|
"""Flips the coordinates of bounding boxes, segments, and keypoints vertically.""" |
|
if self._bboxes.format == 'xyxy': |
|
y1 = self.bboxes[:, 1].copy() |
|
y2 = self.bboxes[:, 3].copy() |
|
self.bboxes[:, 1] = h - y2 |
|
self.bboxes[:, 3] = h - y1 |
|
else: |
|
self.bboxes[:, 1] = h - self.bboxes[:, 1] |
|
self.segments[..., 1] = h - self.segments[..., 1] |
|
if self.keypoints is not None: |
|
self.keypoints[..., 1] = h - self.keypoints[..., 1] |
|
|
|
def fliplr(self, w): |
|
"""Reverses the order of the bounding boxes and segments horizontally.""" |
|
if self._bboxes.format == 'xyxy': |
|
x1 = self.bboxes[:, 0].copy() |
|
x2 = self.bboxes[:, 2].copy() |
|
self.bboxes[:, 0] = w - x2 |
|
self.bboxes[:, 2] = w - x1 |
|
else: |
|
self.bboxes[:, 0] = w - self.bboxes[:, 0] |
|
self.segments[..., 0] = w - self.segments[..., 0] |
|
if self.keypoints is not None: |
|
self.keypoints[..., 0] = w - self.keypoints[..., 0] |
|
|
|
def clip(self, w, h): |
|
"""Clips bounding boxes, segments, and keypoints values to stay within image boundaries.""" |
|
ori_format = self._bboxes.format |
|
self.convert_bbox(format='xyxy') |
|
self.bboxes[:, [0, 2]] = self.bboxes[:, [0, 2]].clip(0, w) |
|
self.bboxes[:, [1, 3]] = self.bboxes[:, [1, 3]].clip(0, h) |
|
if ori_format != 'xyxy': |
|
self.convert_bbox(format=ori_format) |
|
self.segments[..., 0] = self.segments[..., 0].clip(0, w) |
|
self.segments[..., 1] = self.segments[..., 1].clip(0, h) |
|
if self.keypoints is not None: |
|
self.keypoints[..., 0] = self.keypoints[..., 0].clip(0, w) |
|
self.keypoints[..., 1] = self.keypoints[..., 1].clip(0, h) |
|
|
|
def remove_zero_area_boxes(self): |
|
"""Remove zero-area boxes, i.e. after clipping some boxes may have zero width or height. This removes them.""" |
|
good = self._bboxes.areas() > 0 |
|
if not all(good): |
|
self._bboxes = Bboxes(self._bboxes.bboxes[good], format=self._bboxes.format) |
|
if len(self.segments): |
|
self.segments = self.segments[good] |
|
if self.keypoints is not None: |
|
self.keypoints = self.keypoints[good] |
|
return good |
|
|
|
def update(self, bboxes, segments=None, keypoints=None): |
|
"""Updates instance variables.""" |
|
self._bboxes = Bboxes(bboxes, format=self._bboxes.format) |
|
if segments is not None: |
|
self.segments = segments |
|
if keypoints is not None: |
|
self.keypoints = keypoints |
|
|
|
def __len__(self): |
|
"""Return the length of the instance list.""" |
|
return len(self.bboxes) |
|
|
|
@classmethod |
|
def concatenate(cls, instances_list: List['Instances'], axis=0) -> 'Instances': |
|
""" |
|
Concatenates a list of Instances objects into a single Instances object. |
|
|
|
Args: |
|
instances_list (List[Instances]): A list of Instances objects to concatenate. |
|
axis (int, optional): The axis along which the arrays will be concatenated. Defaults to 0. |
|
|
|
Returns: |
|
Instances: A new Instances object containing the concatenated bounding boxes, |
|
segments, and keypoints if present. |
|
|
|
Note: |
|
The `Instances` objects in the list should have the same properties, such as |
|
the format of the bounding boxes, whether keypoints are present, and if the |
|
coordinates are normalized. |
|
""" |
|
assert isinstance(instances_list, (list, tuple)) |
|
if not instances_list: |
|
return cls(np.empty(0)) |
|
assert all(isinstance(instance, Instances) for instance in instances_list) |
|
|
|
if len(instances_list) == 1: |
|
return instances_list[0] |
|
|
|
use_keypoint = instances_list[0].keypoints is not None |
|
bbox_format = instances_list[0]._bboxes.format |
|
normalized = instances_list[0].normalized |
|
|
|
cat_boxes = np.concatenate([ins.bboxes for ins in instances_list], axis=axis) |
|
cat_segments = np.concatenate([b.segments for b in instances_list], axis=axis) |
|
cat_keypoints = np.concatenate([b.keypoints for b in instances_list], axis=axis) if use_keypoint else None |
|
return cls(cat_boxes, cat_segments, cat_keypoints, bbox_format, normalized) |
|
|
|
@property |
|
def bboxes(self): |
|
"""Return bounding boxes.""" |
|
return self._bboxes.bboxes |
|
|