Spaces:
Runtime error
Runtime error
import os | |
import json | |
import requests | |
import gradio as gr | |
import pandas as pd | |
from huggingface_hub import HfApi, hf_hub_download, snapshot_download | |
from huggingface_hub.repocard import metadata_load | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from tqdm.contrib.concurrent import thread_map | |
from utils import make_clickable_model, make_clickable_user | |
DATASET_REPO_URL = ( | |
"https://huggingface.co/datasets/hivex-research/hivex-leaderboard-data" | |
) | |
DATASET_REPO_ID = "hivex-research/hivex-leaderboard-data" | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
block = gr.Blocks() | |
api = HfApi(token=HF_TOKEN) | |
hivex_envs = [ | |
{ | |
"hivex_env": "hivex-wind-farm-control", | |
}, | |
{ | |
"hivex_env": "hivex-wildfire-resource-management", | |
}, | |
{ | |
"hivex_env": "hivex-drone-based-reforestation", | |
}, | |
{ | |
"hivex_env": "hivex-ocean-plastic-collection", | |
}, | |
{ | |
"hivex_env": "hivex-aerial-wildfire-suppression", | |
}, | |
] | |
def restart(): | |
print("RESTART") | |
api.restart_space(repo_id="hivex-research/hivex-leaderboard") | |
def download_leaderboard_dataset(): | |
path = snapshot_download(repo_id=DATASET_REPO_ID, repo_type="dataset") | |
return path | |
def get_model_ids(hivex_env): | |
api = HfApi() | |
models = api.list_models(filter=hivex_env) | |
model_ids = [x.modelId for x in models] | |
return model_ids | |
def get_metadata(model_id): | |
try: | |
readme_path = hf_hub_download(model_id, filename="README.md", etag_timeout=180) | |
return metadata_load(readme_path) | |
except requests.exceptions.HTTPError: | |
# 404 README.md not found | |
return None | |
# def parse_metrics_accuracy(meta): | |
# if "model-index" not in meta: | |
# return None | |
# result = meta["model-index"][0]["results"] | |
# metrics = result[0]["metrics"] | |
# accuracy = metrics[0]["value"] | |
# return accuracy | |
# def parse_rewards(accuracy): | |
# default_std = -1000 | |
# default_reward = -1000 | |
# if accuracy != None: | |
# accuracy = str(accuracy) | |
# parsed = accuracy.split("+/-") | |
# if len(parsed) > 1: | |
# mean_reward = float(parsed[0].strip()) | |
# std_reward = float(parsed[1].strip()) | |
# elif len(parsed) == 1: # only mean reward | |
# mean_reward = float(parsed[0].strip()) | |
# std_reward = float(0) | |
# else: | |
# mean_reward = float(default_std) | |
# std_reward = float(default_reward) | |
# else: | |
# mean_reward = float(default_std) | |
# std_reward = float(default_reward) | |
# return mean_reward, std_reward | |
def rank_dataframe(dataframe): | |
dataframe = dataframe.sort_values( | |
by=["Cumulative Reward", "User", "Model"], ascending=False | |
) | |
if not "Ranking" in dataframe.columns: | |
dataframe.insert(0, "Ranking", [i for i in range(1, len(dataframe) + 1)]) | |
else: | |
dataframe["Ranking"] = [i for i in range(1, len(dataframe) + 1)] | |
return dataframe | |
def update_leaderboard_dataset_parallel(hivex_env, path): | |
# Get model ids associated with hivex_env | |
model_ids = get_model_ids(hivex_env) | |
def process_model(model_id): | |
meta = get_metadata(model_id) | |
# LOADED_MODEL_METADATA[model_id] = meta if meta is not None else '' | |
if meta is None: | |
return None | |
user_id = model_id.split("/")[0] | |
row = {} | |
row["User"] = user_id | |
row["Model"] = model_id | |
# accuracy = parse_metrics_accuracy(meta) | |
# mean_reward, std_reward = parse_rewards(accuracy) | |
# mean_reward = mean_reward if not pd.isna(mean_reward) else 0 | |
# std_reward = std_reward if not pd.isna(std_reward) else 0 | |
# row["Results"] = mean_reward - std_reward | |
# row["Mean Reward"] = mean_reward | |
# row["Std Reward"] = std_reward | |
results = meta["model-index"][0]["results"][0]["metrics"] | |
for result in results: | |
row[result["name"]] = float(result["value"].split("+/-")[0].strip()) | |
return row | |
data = list(thread_map(process_model, model_ids, desc="Processing models")) | |
# Filter out None results (models with no metadata) | |
data = [row for row in data if row is not None] | |
ranked_dataframe = rank_dataframe(pd.DataFrame.from_records(data)) | |
new_history = ranked_dataframe | |
file_path = path + "/" + hivex_env + ".csv" | |
new_history.to_csv(file_path, index=False) | |
return ranked_dataframe | |
def run_update_dataset(): | |
path_ = download_leaderboard_dataset() | |
for i in range(0, len(hivex_envs)): | |
hivex_env = hivex_envs[i] | |
update_leaderboard_dataset_parallel(hivex_env["hivex_env"], path_) | |
api.upload_folder( | |
folder_path=path_, | |
repo_id="hivex-research/hivex-leaderboard-data", | |
repo_type="dataset", | |
commit_message="Update dataset", | |
) | |
def get_data(rl_env, path) -> pd.DataFrame: | |
""" | |
Get data from rl_env | |
:return: data as a pandas DataFrame | |
""" | |
csv_path = path + "/" + rl_env + ".csv" | |
data = pd.read_csv(csv_path) | |
for index, row in data.iterrows(): | |
user_id = row["User"] | |
data.loc[index, "User"] = make_clickable_user(user_id) | |
model_id = row["Model"] | |
data.loc[index, "Model"] = make_clickable_model(model_id) | |
return data | |
def get_data_no_html(rl_env, path) -> pd.DataFrame: | |
""" | |
Get data from rl_env | |
:return: data as a pandas DataFrame | |
""" | |
csv_path = path + "/" + rl_env + ".csv" | |
data = pd.read_csv(csv_path) | |
return data | |
run_update_dataset() | |
main_block = gr.Blocks() | |
with main_block: | |
with gr.Row(elem_id="header-row"): | |
# TITLE + "<p>Total models: " + str(len(HARD_LEADERBOARD_DF))+ "</p>" | |
gr.HTML("<h1>Leaderboard</h1>") | |
# gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.Tab("π Hard Set") as hard_tabs: | |
with gr.TabItem( | |
"π Benchmark", elem_id="llm-benchmark-tab-table", id="hard_bench" | |
): | |
gr.DataTable( | |
get_data( | |
"hivex-wind-farm-control", "datasets/hivex-leaderboard-data" | |
), | |
elem_id="hard_benchmark_table", | |
elem_classes="table", | |
) | |