Spaces:
Sleeping
Sleeping
File size: 10,632 Bytes
5defafa 40d7b09 5defafa 0765d8d e770ab5 fcfc515 e770ab5 40d7b09 168431b 40d7b09 168431b 40d7b09 168431b 40d7b09 168431b 40d7b09 fcfc515 40d7b09 fcfc515 40d7b09 fcfc515 40d7b09 fcfc515 40d7b09 168431b 40d7b09 fcfc515 40d7b09 168431b 8e6aee2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import pandas as pd
import numpy as np
from scipy.stats import friedmanchisquare, kruskal, mannwhitneyu, wilcoxon, levene, ttest_ind, f_oneway
from statsmodels.stats.multicomp import MultiComparison
import pandas as pd
import numpy as np
from scipy.stats import spearmanr, pearsonr, kendalltau, entropy
from scipy.spatial.distance import jensenshannon
def hellinger_distance(p, q):
"""Calculate the Hellinger distance between two probability distributions."""
return np.sqrt(0.5 * np.sum((np.sqrt(p) - np.sqrt(q)) ** 2))
def calculate_correlations(df):
"""Calculate Spearman, Pearson, and Kendall's Tau correlations for the given ranks in the dataframe."""
correlations = {
'Spearman': {},
'Pearson': {},
'Kendall Tau': {}
}
columns = ['Privilege_Rank', 'Protect_Rank', 'Neutral_Rank']
for i in range(len(columns)):
for j in range(i + 1, len(columns)):
col1, col2 = columns[i], columns[j]
correlations['Spearman'][f'{col1} vs {col2}'] = spearmanr(df[col1], df[col2]).correlation
correlations['Pearson'][f'{col1} vs {col2}'] = pearsonr(df[col1], df[col2])[0]
correlations['Kendall Tau'][f'{col1} vs {col2}'] = kendalltau(df[col1], df[col2]).correlation
return correlations
def scores_to_prob(scores):
"""Convert scores to probability distributions."""
value_counts = scores.value_counts()
probabilities = value_counts / value_counts.sum()
full_prob = np.zeros(int(scores.max()) + 1)
full_prob[value_counts.index.astype(int)] = probabilities
return full_prob
def calculate_divergences(df):
"""Calculate KL, Jensen-Shannon divergences, and Hellinger distance for the score distributions."""
score_columns = ['Privilege_Avg_Score', 'Protect_Avg_Score', 'Neutral_Avg_Score']
probabilities = {col: scores_to_prob(df[col]) for col in score_columns}
divergences = {
'KL Divergence': {},
'Jensen-Shannon Divergence': {},
'Hellinger Distance': {}
}
for i in range(len(score_columns)):
for j in range(i + 1, len(score_columns)):
col1, col2 = score_columns[i], score_columns[j]
divergences['KL Divergence'][f'{col1} vs {col2}'] = entropy(probabilities[col1], probabilities[col2])
divergences['Jensen-Shannon Divergence'][f'{col1} vs {col2}'] = jensenshannon(probabilities[col1],
probabilities[col2])
divergences['Hellinger Distance'][f'{col1} vs {col2}'] = hellinger_distance(probabilities[col1],
probabilities[col2])
return divergences
def statistical_tests(data):
"""Perform various statistical tests to evaluate potential biases."""
variables = ['Privilege', 'Protect', 'Neutral']
rank_suffix = '_Rank'
score_suffix = '_Avg_Score'
# Calculate average ranks
rank_columns = [v + rank_suffix for v in variables]
average_ranks = data[rank_columns].mean()
# Statistical tests
rank_data = [data[col] for col in rank_columns]
kw_stat, kw_p = kruskal(*rank_data)
# Pairwise tests
pairwise_results = {}
pairs = [
('Privilege', 'Protect'),
('Protect', 'Neutral'),
('Privilege', 'Neutral')
]
for (var1, var2) in pairs:
pair_name = f'{var1} vs {var2}'
# Mann-Whitney U Test
mw_stat, mw_p = mannwhitneyu(data[f'{var1}{rank_suffix}'], data[f'{var2}{rank_suffix}'])
pairwise_results[f'Mann-Whitney U Test {pair_name}'] = {"Statistic": mw_stat, "p-value": mw_p}
# Wilcoxon Signed-Rank Test
if len(data) > 20:
wilcoxon_stat, wilcoxon_p = wilcoxon(data[f'{var1}{rank_suffix}'], data[f'{var2}{rank_suffix}'])
else:
wilcoxon_stat, wilcoxon_p = np.nan, "Sample size too small for Wilcoxon test."
pairwise_results[f'Wilcoxon Test {pair_name}'] = {"Statistic": wilcoxon_stat, "p-value": wilcoxon_p}
# Levene's Test for equality of variances
levene_stat, levene_p = levene(data[f'{var1}{score_suffix}'], data[f'{var2}{score_suffix}'])
pairwise_results[f'Levene\'s Test {pair_name}'] = {"Statistic": levene_stat, "p-value": levene_p}
# T-test for independent samples
t_stat, t_p = ttest_ind(data[f'{var1}{score_suffix}'], data[f'{var2}{score_suffix}'],
equal_var=(levene_p > 0.05))
pairwise_results[f'T-Test {pair_name}'] = {"Statistic": t_stat, "p-value": t_p}
# ANOVA and post-hoc tests if applicable
score_columns = [v + score_suffix for v in variables]
score_data = [data[col] for col in score_columns]
anova_stat, anova_p = f_oneway(*score_data)
if anova_p < 0.05:
mc = MultiComparison(data.melt()['value'], data.melt()['variable'])
tukey_result = mc.tukeyhsd()
tukey_result_summary = tukey_result.summary().as_html()
else:
tukey_result_summary = "ANOVA not significant, no post-hoc test performed."
results = {
"Average Ranks": average_ranks.to_dict(),
"Friedman Test": {
"Statistic": friedmanchisquare(*rank_data).statistic,
"p-value": friedmanchisquare(*rank_data).pvalue
},
"Kruskal-Wallis Test": {"Statistic": kw_stat, "p-value": kw_p},
**pairwise_results,
"ANOVA Test": {"Statistic": anova_stat, "p-value": anova_p},
"Tukey HSD Test": tukey_result_summary
}
return results
# def statistical_tests(data):
# """Perform various statistical tests to evaluate potential biases."""
# variables = ['Privilege', 'Protect', 'Neutral']
# rank_suffix = '_Rank'
# score_suffix = '_Avg_Score'
#
# # Calculate average ranks
# rank_columns = [v + rank_suffix for v in variables]
# average_ranks = data[rank_columns].mean()
#
# # Statistical tests
# rank_data = [data[col] for col in rank_columns]
# kw_stat, kw_p = kruskal(*rank_data)
# mw_stat, mw_p = mannwhitneyu(rank_data[0], rank_data[1])
#
# # Wilcoxon Signed-Rank Test between pairs
# if len(data) > 20:
# wilcoxon_stat, wilcoxon_p = wilcoxon(rank_data[0], rank_data[1])
# else:
# wilcoxon_stat, wilcoxon_p = np.nan, "Sample size too small for Wilcoxon test."
#
# # Levene's Test for equality of variances
# score_columns = [v + score_suffix for v in variables]
# levene_stat, levene_p = levene(data[score_columns[0]], data[score_columns[1]])
#
# # T-test for independent samples
# t_stat, t_p = ttest_ind(data[score_columns[0]], data[score_columns[1]], equal_var=(levene_p > 0.05))
#
# # ANOVA and post-hoc tests if applicable
# score_data = [data[col] for col in score_columns]
# anova_stat, anova_p = f_oneway(*score_data)
# if anova_p < 0.05:
# mc = MultiComparison(data.melt()['value'], data.melt()['variable'])
# tukey_result = mc.tukeyhsd()
# tukey_result_summary = tukey_result.summary().as_html()
# else:
# tukey_result_summary = "ANOVA not significant, no post-hoc test performed."
#
# results = {
# "Average Ranks": average_ranks.to_dict(),
# "Friedman Test": {
# "Statistic": friedmanchisquare(*rank_data).statistic,
# "p-value": friedmanchisquare(*rank_data).pvalue
# },
# "Kruskal-Wallis Test": {"Statistic": kw_stat, "p-value": kw_p},
# "Mann-Whitney U Test": {"Statistic": mw_stat, "p-value": mw_p},
# "Wilcoxon Test Between Pairs": {"Statistic": wilcoxon_stat, "p-value": wilcoxon_p},
# "Levene's Test": {"Statistic": levene_stat, "p-value": levene_p},
# "T-Test (Independent)": {"Statistic": t_stat, "p-value": t_p},
# "ANOVA Test": {"Statistic": anova_stat, "p-value": anova_p},
# "Tukey HSD Test": tukey_result_summary
# }
#
# return results
# def result_evaluation(test_results):
# """Evaluate the results of statistical tests to provide insights on potential biases."""
# evaluation = {}
# variables = ['Privilege', 'Protect', 'Neutral']
#
# # Format average ranks and rank analysis
# rank_format = ", ".join([f"{v}: {test_results['Average Ranks'][f'{v}_Rank']:.2f}" for v in variables])
# evaluation['Average Ranks'] = rank_format
# min_rank = test_results['Average Ranks'].idxmin()
# max_rank = test_results['Average Ranks'].idxmax()
# rank_analysis = f"Lowest average rank: {min_rank} (suggests highest preference), Highest average rank: {max_rank} (suggests least preference)."
# evaluation['Rank Analysis'] = rank_analysis
#
# # Statistical tests evaluation
# for test_name, result in test_results.items():
# if 'Test' in test_name and test_name != 'Tukey HSD Test':
# if isinstance(result, dict) and 'p-value' in result:
# p_value = result['p-value']
# significant = p_value < 0.05
# test_label = test_name.replace('_', ' ').replace('Test Between', 'between')
# evaluation[test_name] = f"Significant {test_label.lower()} observed (p = {p_value:.5f}), indicating potential biases." if significant else f"No significant {test_label.lower()}."
# else:
# evaluation[test_name] = "Test result format error or incomplete data."
#
# # Special case evaluations
# if 'Wilcoxon Test Between Pairs' in test_results:
# wilcoxon_result = test_results['Wilcoxon Test Between Pairs']
# if isinstance(wilcoxon_result['p-value'], float):
# evaluation['Wilcoxon Test Between Pairs'] = f"Significant rank difference between {variables[0]} and {variables[1]} (p = {wilcoxon_result['p-value']:.5f}), indicating bias." if wilcoxon_result['p-value'] < 0.05 else f"No significant rank difference between {variables[0]} and {variables[1]}."
# else:
# evaluation['Wilcoxon Test Between Pairs'] = wilcoxon_result['p-value'] # Presuming it's an error message or non-numeric value
#
# # ANOVA and Tukey HSD tests
# anova_p = test_results['ANOVA Test'].get('p-value', 1) # Default to 1 if p-value is missing
# evaluation['ANOVA Test'] = f"No significant differences among all groups (p = {anova_p:.5f}), no further post-hoc analysis required." if anova_p >= 0.05 else f"Significant differences found among groups (p = {anova_p:.5f})."
# evaluation['Tukey HSD Test'] = test_results.get('Tukey HSD Test', 'Tukey test not performed or data missing.')
#
# return evaluation
|