File size: 10,632 Bytes
5defafa
 
40d7b09
 
5defafa
0765d8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e770ab5
fcfc515
e770ab5
 
 
 
40d7b09
 
 
 
 
 
 
 
168431b
 
 
 
 
 
 
40d7b09
168431b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40d7b09
168431b
 
 
 
40d7b09
 
168431b
40d7b09
 
 
fcfc515
40d7b09
fcfc515
40d7b09
fcfc515
40d7b09
 
fcfc515
 
 
 
 
40d7b09
168431b
40d7b09
fcfc515
40d7b09
 
 
 
168431b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e6aee2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import pandas as pd
import numpy as np
from scipy.stats import friedmanchisquare, kruskal, mannwhitneyu, wilcoxon, levene, ttest_ind, f_oneway
from statsmodels.stats.multicomp import MultiComparison

import pandas as pd
import numpy as np
from scipy.stats import spearmanr, pearsonr, kendalltau, entropy
from scipy.spatial.distance import jensenshannon


def hellinger_distance(p, q):
    """Calculate the Hellinger distance between two probability distributions."""
    return np.sqrt(0.5 * np.sum((np.sqrt(p) - np.sqrt(q)) ** 2))


def calculate_correlations(df):
    """Calculate Spearman, Pearson, and Kendall's Tau correlations for the given ranks in the dataframe."""
    correlations = {
        'Spearman': {},
        'Pearson': {},
        'Kendall Tau': {}
    }
    columns = ['Privilege_Rank', 'Protect_Rank', 'Neutral_Rank']
    for i in range(len(columns)):
        for j in range(i + 1, len(columns)):
            col1, col2 = columns[i], columns[j]
            correlations['Spearman'][f'{col1} vs {col2}'] = spearmanr(df[col1], df[col2]).correlation
            correlations['Pearson'][f'{col1} vs {col2}'] = pearsonr(df[col1], df[col2])[0]
            correlations['Kendall Tau'][f'{col1} vs {col2}'] = kendalltau(df[col1], df[col2]).correlation
    return correlations


def scores_to_prob(scores):
    """Convert scores to probability distributions."""
    value_counts = scores.value_counts()
    probabilities = value_counts / value_counts.sum()
    full_prob = np.zeros(int(scores.max()) + 1)
    full_prob[value_counts.index.astype(int)] = probabilities
    return full_prob


def calculate_divergences(df):
    """Calculate KL, Jensen-Shannon divergences, and Hellinger distance for the score distributions."""
    score_columns = ['Privilege_Avg_Score', 'Protect_Avg_Score', 'Neutral_Avg_Score']
    probabilities = {col: scores_to_prob(df[col]) for col in score_columns}
    divergences = {
        'KL Divergence': {},
        'Jensen-Shannon Divergence': {},
        'Hellinger Distance': {}
    }
    for i in range(len(score_columns)):
        for j in range(i + 1, len(score_columns)):
            col1, col2 = score_columns[i], score_columns[j]
            divergences['KL Divergence'][f'{col1} vs {col2}'] = entropy(probabilities[col1], probabilities[col2])
            divergences['Jensen-Shannon Divergence'][f'{col1} vs {col2}'] = jensenshannon(probabilities[col1],
                                                                                          probabilities[col2])
            divergences['Hellinger Distance'][f'{col1} vs {col2}'] = hellinger_distance(probabilities[col1],
                                                                                        probabilities[col2])
    return divergences


def statistical_tests(data):
    """Perform various statistical tests to evaluate potential biases."""
    variables = ['Privilege', 'Protect', 'Neutral']
    rank_suffix = '_Rank'
    score_suffix = '_Avg_Score'

    # Calculate average ranks
    rank_columns = [v + rank_suffix for v in variables]
    average_ranks = data[rank_columns].mean()

    # Statistical tests
    rank_data = [data[col] for col in rank_columns]
    kw_stat, kw_p = kruskal(*rank_data)

    # Pairwise tests
    pairwise_results = {}
    pairs = [
        ('Privilege', 'Protect'),
        ('Protect', 'Neutral'),
        ('Privilege', 'Neutral')
    ]

    for (var1, var2) in pairs:
        pair_name = f'{var1} vs {var2}'

        # Mann-Whitney U Test
        mw_stat, mw_p = mannwhitneyu(data[f'{var1}{rank_suffix}'], data[f'{var2}{rank_suffix}'])
        pairwise_results[f'Mann-Whitney U Test {pair_name}'] = {"Statistic": mw_stat, "p-value": mw_p}

        # Wilcoxon Signed-Rank Test
        if len(data) > 20:
            wilcoxon_stat, wilcoxon_p = wilcoxon(data[f'{var1}{rank_suffix}'], data[f'{var2}{rank_suffix}'])
        else:
            wilcoxon_stat, wilcoxon_p = np.nan, "Sample size too small for Wilcoxon test."
        pairwise_results[f'Wilcoxon Test {pair_name}'] = {"Statistic": wilcoxon_stat, "p-value": wilcoxon_p}

        # Levene's Test for equality of variances
        levene_stat, levene_p = levene(data[f'{var1}{score_suffix}'], data[f'{var2}{score_suffix}'])
        pairwise_results[f'Levene\'s Test {pair_name}'] = {"Statistic": levene_stat, "p-value": levene_p}

        # T-test for independent samples
        t_stat, t_p = ttest_ind(data[f'{var1}{score_suffix}'], data[f'{var2}{score_suffix}'],
                                equal_var=(levene_p > 0.05))
        pairwise_results[f'T-Test {pair_name}'] = {"Statistic": t_stat, "p-value": t_p}

    # ANOVA and post-hoc tests if applicable
    score_columns = [v + score_suffix for v in variables]
    score_data = [data[col] for col in score_columns]
    anova_stat, anova_p = f_oneway(*score_data)
    if anova_p < 0.05:
        mc = MultiComparison(data.melt()['value'], data.melt()['variable'])
        tukey_result = mc.tukeyhsd()
        tukey_result_summary = tukey_result.summary().as_html()
    else:
        tukey_result_summary = "ANOVA not significant, no post-hoc test performed."

    results = {
        "Average Ranks": average_ranks.to_dict(),
        "Friedman Test": {
            "Statistic": friedmanchisquare(*rank_data).statistic,
            "p-value": friedmanchisquare(*rank_data).pvalue
        },
        "Kruskal-Wallis Test": {"Statistic": kw_stat, "p-value": kw_p},
        **pairwise_results,
        "ANOVA Test": {"Statistic": anova_stat, "p-value": anova_p},
        "Tukey HSD Test": tukey_result_summary
    }

    return results

# def statistical_tests(data):
#     """Perform various statistical tests to evaluate potential biases."""
#     variables = ['Privilege', 'Protect', 'Neutral']
#     rank_suffix = '_Rank'
#     score_suffix = '_Avg_Score'
#
#     # Calculate average ranks
#     rank_columns = [v + rank_suffix for v in variables]
#     average_ranks = data[rank_columns].mean()
#
#     # Statistical tests
#     rank_data = [data[col] for col in rank_columns]
#     kw_stat, kw_p = kruskal(*rank_data)
#     mw_stat, mw_p = mannwhitneyu(rank_data[0], rank_data[1])
#
#     # Wilcoxon Signed-Rank Test between pairs
#     if len(data) > 20:
#         wilcoxon_stat, wilcoxon_p = wilcoxon(rank_data[0], rank_data[1])
#     else:
#         wilcoxon_stat, wilcoxon_p = np.nan, "Sample size too small for Wilcoxon test."
#
#     # Levene's Test for equality of variances
#     score_columns = [v + score_suffix for v in variables]
#     levene_stat, levene_p = levene(data[score_columns[0]], data[score_columns[1]])
#
#     # T-test for independent samples
#     t_stat, t_p = ttest_ind(data[score_columns[0]], data[score_columns[1]], equal_var=(levene_p > 0.05))
#
#     # ANOVA and post-hoc tests if applicable
#     score_data = [data[col] for col in score_columns]
#     anova_stat, anova_p = f_oneway(*score_data)
#     if anova_p < 0.05:
#         mc = MultiComparison(data.melt()['value'], data.melt()['variable'])
#         tukey_result = mc.tukeyhsd()
#         tukey_result_summary = tukey_result.summary().as_html()
#     else:
#         tukey_result_summary = "ANOVA not significant, no post-hoc test performed."
#
#     results = {
#         "Average Ranks": average_ranks.to_dict(),
#         "Friedman Test": {
#             "Statistic": friedmanchisquare(*rank_data).statistic,
#             "p-value": friedmanchisquare(*rank_data).pvalue
#         },
#         "Kruskal-Wallis Test": {"Statistic": kw_stat, "p-value": kw_p},
#         "Mann-Whitney U Test": {"Statistic": mw_stat, "p-value": mw_p},
#         "Wilcoxon Test Between Pairs": {"Statistic": wilcoxon_stat, "p-value": wilcoxon_p},
#         "Levene's Test": {"Statistic": levene_stat, "p-value": levene_p},
#         "T-Test (Independent)": {"Statistic": t_stat, "p-value": t_p},
#         "ANOVA Test": {"Statistic": anova_stat, "p-value": anova_p},
#         "Tukey HSD Test": tukey_result_summary
#     }
#
#     return results

# def result_evaluation(test_results):
#     """Evaluate the results of statistical tests to provide insights on potential biases."""
#     evaluation = {}
#     variables = ['Privilege', 'Protect', 'Neutral']
#
#     # Format average ranks and rank analysis
#     rank_format = ", ".join([f"{v}: {test_results['Average Ranks'][f'{v}_Rank']:.2f}" for v in variables])
#     evaluation['Average Ranks'] = rank_format
#     min_rank = test_results['Average Ranks'].idxmin()
#     max_rank = test_results['Average Ranks'].idxmax()
#     rank_analysis = f"Lowest average rank: {min_rank} (suggests highest preference), Highest average rank: {max_rank} (suggests least preference)."
#     evaluation['Rank Analysis'] = rank_analysis
#
#     # Statistical tests evaluation
#     for test_name, result in test_results.items():
#         if 'Test' in test_name and test_name != 'Tukey HSD Test':
#             if isinstance(result, dict) and 'p-value' in result:
#                 p_value = result['p-value']
#                 significant = p_value < 0.05
#                 test_label = test_name.replace('_', ' ').replace('Test Between', 'between')
#                 evaluation[test_name] = f"Significant {test_label.lower()} observed (p = {p_value:.5f}), indicating potential biases." if significant else f"No significant {test_label.lower()}."
#             else:
#                 evaluation[test_name] = "Test result format error or incomplete data."
#
#     # Special case evaluations
#     if 'Wilcoxon Test Between Pairs' in test_results:
#         wilcoxon_result = test_results['Wilcoxon Test Between Pairs']
#         if isinstance(wilcoxon_result['p-value'], float):
#             evaluation['Wilcoxon Test Between Pairs'] = f"Significant rank difference between {variables[0]} and {variables[1]} (p = {wilcoxon_result['p-value']:.5f}), indicating bias." if wilcoxon_result['p-value'] < 0.05 else f"No significant rank difference between {variables[0]} and {variables[1]}."
#         else:
#             evaluation['Wilcoxon Test Between Pairs'] = wilcoxon_result['p-value']  # Presuming it's an error message or non-numeric value
#
#     # ANOVA and Tukey HSD tests
#     anova_p = test_results['ANOVA Test'].get('p-value', 1)  # Default to 1 if p-value is missing
#     evaluation['ANOVA Test'] = f"No significant differences among all groups (p = {anova_p:.5f}), no further post-hoc analysis required." if anova_p >= 0.05 else f"Significant differences found among groups (p = {anova_p:.5f})."
#     evaluation['Tukey HSD Test'] = test_results.get('Tukey HSD Test', 'Tukey test not performed or data missing.')
#
#     return evaluation