pages/1_Injection.py CHANGED
@@ -10,7 +10,8 @@ st.title('Result Generation')
10
 
11
  def check_password():
12
  def password_entered():
13
- if password_input == os.getenv('PASSWORD'):
 
14
  st.session_state['password_correct'] = True
15
  else:
16
  st.error("Incorrect Password, please try again.")
@@ -28,12 +29,18 @@ def initialize_state():
28
  "data_processed", "group_name", "occupation", "privilege_label", "protect_label", "num_run",
29
  "uploaded_file", "occupation_submitted","sample_size","charateristics","proportion","prompt_template"]
30
  defaults = [False, "", "https://safeguard-monitor.openai.azure.com/", "gpt35-1106", 0.0, 300, False, "Gender",
31
- "Programmer", "Male", "Female", 1, None, False,2,"This candidate's performance during the internship at our institution was evaluated to be at the 50th percentile among current employees.",1,PROMPT_TEMPLATE]
32
  for key, default in zip(keys, defaults):
33
  if key not in st.session_state:
34
  st.session_state[key] = default
35
 
36
 
 
 
 
 
 
 
37
  if not st.session_state.get('password_correct', False):
38
  check_password()
39
  else:
@@ -80,17 +87,23 @@ else:
80
  st.session_state.prompt_template = st.text_area("Prompt Template", value=st.session_state.prompt_template)
81
 
82
  st.session_state.sample_size = st.number_input("Sample Size", 2, len(df), st.session_state.sample_size)
83
- st.session_state.proportion = st.number_input("Proportion", 0.0, 1.0, float(st.session_state.proportion), 0.01)
84
  st.session_state.group_name = st.text_input("Group Name", value=st.session_state.group_name)
85
  st.session_state.privilege_label = st.text_input("Privilege Label", value=st.session_state.privilege_label)
86
  st.session_state.protect_label = st.text_input("Protect Label", value=st.session_state.protect_label)
 
87
 
88
  #st.session_state.charateristics = st.text_area("Characteristics", value=st.session_state.charateristics)
89
 
90
- st.session_state.num_run = st.number_input("Number of Runs", 1, 10, st.session_state.num_run)
91
-
92
  df = df[df["Occupation"] == st.session_state.occupation]
93
- df = df.sample(n=st.session_state.sample_size,random_state=42)
 
 
 
 
 
 
 
94
  st.write('Data:', df)
95
 
96
  if st.button('Process Data') and not st.session_state.data_processed:
@@ -104,7 +117,7 @@ else:
104
 
105
  with st.spinner('Processing data...'):
106
  parameters = {"temperature": st.session_state.temperature, "max_tokens": st.session_state.max_tokens}
107
- preprocessed_df = process_scores_multiple(df, st.session_state.num_run, parameters, st.session_state.privilege_label,st.session_state.protect_label, agent, st.session_state.group_name,st.session_state.occupation,st.session_state.proportion,st.session_state.prompt_template)
108
  st.session_state.data_processed = True # Mark as processed
109
 
110
  st.write('Processed Data:', preprocessed_df)
@@ -128,3 +141,4 @@ else:
128
  st.session_state.num_run = 1
129
  st.session_state.data_processed = False
130
  st.session_state.uploaded_file = None
 
 
10
 
11
  def check_password():
12
  def password_entered():
13
+ # if password_input == os.getenv('PASSWORD'):
14
+ if password_input == " ":
15
  st.session_state['password_correct'] = True
16
  else:
17
  st.error("Incorrect Password, please try again.")
 
29
  "data_processed", "group_name", "occupation", "privilege_label", "protect_label", "num_run",
30
  "uploaded_file", "occupation_submitted","sample_size","charateristics","proportion","prompt_template"]
31
  defaults = [False, "", "https://safeguard-monitor.openai.azure.com/", "gpt35-1106", 0.0, 300, False, "Gender",
32
+ "Programmer", "Male", "Female", 1, None, False,2,"This candidate's performance during the internship at our institution was evaluated to be at the 50th percentile among current employees.", 1.0 ,PROMPT_TEMPLATE]
33
  for key, default in zip(keys, defaults):
34
  if key not in st.session_state:
35
  st.session_state[key] = default
36
 
37
 
38
+ def change_column_value(df_old, df_change, here_column, switch_to_column, common_column='Resume'):
39
+ merged_df = df_old.merge(df_change, on=common_column, how='left')
40
+ df_old[here_column] = merged_df[switch_to_column]
41
+ return df_old
42
+
43
+
44
  if not st.session_state.get('password_correct', False):
45
  check_password()
46
  else:
 
87
  st.session_state.prompt_template = st.text_area("Prompt Template", value=st.session_state.prompt_template)
88
 
89
  st.session_state.sample_size = st.number_input("Sample Size", 2, len(df), st.session_state.sample_size)
90
+
91
  st.session_state.group_name = st.text_input("Group Name", value=st.session_state.group_name)
92
  st.session_state.privilege_label = st.text_input("Privilege Label", value=st.session_state.privilege_label)
93
  st.session_state.protect_label = st.text_input("Protect Label", value=st.session_state.protect_label)
94
+ st.session_state.num_run = st.number_input("Number of Runs", 1, 10, st.session_state.num_run)
95
 
96
  #st.session_state.charateristics = st.text_area("Characteristics", value=st.session_state.charateristics)
97
 
 
 
98
  df = df[df["Occupation"] == st.session_state.occupation]
99
+
100
+ if file_options == "Example":
101
+ st.session_state.proportion = st.slider("Proportion", 0.2, 1.0, float(st.session_state.proportion), 0.2)
102
+ df_chunked = pd.read_csv("resume_chunked.csv")
103
+ column_switch_to = f'{st.session_state.proportion}_diluted'
104
+ df = change_column_value(df, df_chunked, 'Cleaned_Resume', column_switch_to)
105
+
106
+ df = df.sample(n=st.session_state.sample_size, random_state=42)
107
  st.write('Data:', df)
108
 
109
  if st.button('Process Data') and not st.session_state.data_processed:
 
117
 
118
  with st.spinner('Processing data...'):
119
  parameters = {"temperature": st.session_state.temperature, "max_tokens": st.session_state.max_tokens}
120
+ preprocessed_df = process_scores_multiple(df, st.session_state.num_run, parameters, st.session_state.privilege_label,st.session_state.protect_label, agent, st.session_state.group_name,st.session_state.occupation,st.session_state.prompt_template)
121
  st.session_state.data_processed = True # Mark as processed
122
 
123
  st.write('Processed Data:', preprocessed_df)
 
141
  st.session_state.num_run = 1
142
  st.session_state.data_processed = False
143
  st.session_state.uploaded_file = None
144
+ st.session_state.proportion = 1.0
resume_chunked.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46b8ec7cd5618817dcb98860264aae8b9bf856cc4ac9e0a23f61a12ae72e290a
3
+ size 7864679
resume_subsampled.csv CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9ae325b538c1e601fe44bb2d0377800c0a633a8a19bb6ecb5834386d24aa6bf2
3
- size 3845010
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ead8d4a52de48139bc0c98ab8e5b61210dd93e10856f024adf6f26570ea1353c
3
+ size 3845012
util/__pycache__/__init__.cpython-311.pyc ADDED
Binary file (176 Bytes). View file
 
util/__pycache__/evaluation.cpython-311.pyc ADDED
Binary file (11 kB). View file
 
util/__pycache__/injection.cpython-311.pyc ADDED
Binary file (7.19 kB). View file
 
util/__pycache__/model.cpython-311.pyc ADDED
Binary file (3.55 kB). View file
 
util/__pycache__/prompt.cpython-311.pyc ADDED
Binary file (1.41 kB). View file
 
util/injection.py CHANGED
@@ -5,13 +5,14 @@ import json_repair
5
  import pandas as pd
6
  from tqdm import tqdm
7
 
8
- def create_summary(group_name, label, occupation, row, proportion,template):
 
9
  """Generate a dynamic summary for scoring the applicant, excluding the group feature.
10
  The occupation parameter allows customization of the job position.
11
  """
12
 
13
  resume_info = row['Cleaned_Resume']
14
- resume_info = resume_info[:int(len(resume_info) * proportion)]
15
 
16
  info = f"{group_name}: {label};" if label else ''
17
 
@@ -24,7 +25,7 @@ def create_summary(group_name, label, occupation, row, proportion,template):
24
  return summary
25
 
26
 
27
- def invoke_retry(prompt, agent, parameters,string_input=False):
28
  attempts = 0
29
  delay = 2 # Initial delay in seconds
30
  max_attempts = 5 # Maximum number of retry attempts
@@ -41,7 +42,8 @@ def invoke_retry(prompt, agent, parameters,string_input=False):
41
  score_json = json.loads(score_text)
42
  except json.JSONDecodeError:
43
  try:
44
- score_json = json.loads(json_repair.repair_json(score_text, skip_json_loads=True, return_objects=False))
 
45
  except json.JSONDecodeError:
46
  raise Exception("Failed to decode JSON response even after repair attempt.")
47
  # score = re.search(r'\d+', score_text)
@@ -56,7 +58,7 @@ def invoke_retry(prompt, agent, parameters,string_input=False):
56
  attempts += 1
57
 
58
  return -1
59
- #raise Exception("Failed to complete the API call after maximum retry attempts.")
60
 
61
 
62
  def calculate_avg_score(score_list):
@@ -66,18 +68,19 @@ def calculate_avg_score(score_list):
66
  avg_score = sum(valid_scores) / len(valid_scores)
67
  return avg_score
68
  return None
69
- def process_scores_multiple(df, num_run, parameters, privilege_label, protect_label, agent, group_name, occupation,proportion,template):
70
 
 
 
 
71
  print(f"Processing {len(df)} entries with {num_run} runs each.")
72
  """ Process entries and compute scores concurrently, with progress updates. """
73
- scores = {key: [[] for _ in range(len(df))] for key in ['Privilege','Protect','Neutral']}
74
 
75
  for run in tqdm(range(num_run), desc="Processing runs", unit="run"):
76
  for index, (idx, row) in tqdm(enumerate(df.iterrows()), total=len(df), desc="Processing entries", unit="entry"):
77
 
78
  for key, label in zip(['Privilege', 'Protect', 'Neutral'], [privilege_label, protect_label, False]):
79
-
80
- prompt_normal = create_summary(group_name, label, occupation,row,proportion,template)
81
 
82
  print(f"Run {run + 1} - Entry {index + 1} - {key}")
83
  print("=============================================================")
@@ -86,17 +89,14 @@ def process_scores_multiple(df, num_run, parameters, privilege_label, protect_la
86
 
87
  print(f"Scores: {scores}")
88
 
89
-
90
  # Ensure all scores are lists and calculate average scores
91
- for category in ['Privilege', 'Protect','Neutral']:
92
-
93
  # Ensure the scores are lists and check before assignment
94
  series_data = [lst if isinstance(lst, list) else [lst] for lst in scores[category]]
95
  df[f'{category}_Scores'] = series_data
96
 
97
  # Calculate the average score with additional debug info
98
 
99
-
100
  df[f'{category}_Avg_Score'] = df[f'{category}_Scores'].apply(calculate_avg_score)
101
 
102
  # Add ranks for each score within each row
 
5
  import pandas as pd
6
  from tqdm import tqdm
7
 
8
+
9
+ def create_summary(group_name, label, occupation, row, template):
10
  """Generate a dynamic summary for scoring the applicant, excluding the group feature.
11
  The occupation parameter allows customization of the job position.
12
  """
13
 
14
  resume_info = row['Cleaned_Resume']
15
+ # resume_info = resume_info[:int(len(resume_info) * proportion)]
16
 
17
  info = f"{group_name}: {label};" if label else ''
18
 
 
25
  return summary
26
 
27
 
28
+ def invoke_retry(prompt, agent, parameters, string_input=False):
29
  attempts = 0
30
  delay = 2 # Initial delay in seconds
31
  max_attempts = 5 # Maximum number of retry attempts
 
42
  score_json = json.loads(score_text)
43
  except json.JSONDecodeError:
44
  try:
45
+ score_json = json.loads(
46
+ json_repair.repair_json(score_text, skip_json_loads=True, return_objects=False))
47
  except json.JSONDecodeError:
48
  raise Exception("Failed to decode JSON response even after repair attempt.")
49
  # score = re.search(r'\d+', score_text)
 
58
  attempts += 1
59
 
60
  return -1
61
+ # raise Exception("Failed to complete the API call after maximum retry attempts.")
62
 
63
 
64
  def calculate_avg_score(score_list):
 
68
  avg_score = sum(valid_scores) / len(valid_scores)
69
  return avg_score
70
  return None
 
71
 
72
+
73
+ def process_scores_multiple(df, num_run, parameters, privilege_label, protect_label, agent, group_name, occupation
74
+ , template):
75
  print(f"Processing {len(df)} entries with {num_run} runs each.")
76
  """ Process entries and compute scores concurrently, with progress updates. """
77
+ scores = {key: [[] for _ in range(len(df))] for key in ['Privilege', 'Protect', 'Neutral']}
78
 
79
  for run in tqdm(range(num_run), desc="Processing runs", unit="run"):
80
  for index, (idx, row) in tqdm(enumerate(df.iterrows()), total=len(df), desc="Processing entries", unit="entry"):
81
 
82
  for key, label in zip(['Privilege', 'Protect', 'Neutral'], [privilege_label, protect_label, False]):
83
+ prompt_normal = create_summary(group_name, label, occupation, row, template)
 
84
 
85
  print(f"Run {run + 1} - Entry {index + 1} - {key}")
86
  print("=============================================================")
 
89
 
90
  print(f"Scores: {scores}")
91
 
 
92
  # Ensure all scores are lists and calculate average scores
93
+ for category in ['Privilege', 'Protect', 'Neutral']:
 
94
  # Ensure the scores are lists and check before assignment
95
  series_data = [lst if isinstance(lst, list) else [lst] for lst in scores[category]]
96
  df[f'{category}_Scores'] = series_data
97
 
98
  # Calculate the average score with additional debug info
99
 
 
100
  df[f'{category}_Avg_Score'] = df[f'{category}_Scores'].apply(calculate_avg_score)
101
 
102
  # Add ranks for each score within each row