MicroAi / app.py
holytinz278's picture
Update app.py
4838660 verified
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr
# Load the model and tokenizer
model_path = "WhiteRabbitNeo/WhiteRabbitNeo-13B-v1"
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.float16,
device_map="auto",
load_in_4bit=False,
load_in_8bit=True,
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
# Chatbot prompt and conversation history
tot_system_prompt = """
Answer the Question by exploring multiple reasoning paths as follows:
- First, carefully analyze the question to extract the key information components and break it down into logical sub-questions...
"""
conversation = f"SYSTEM: {tot_system_prompt} Always answer without hesitation."
# Text generation function
def generate_text(instruction):
tokens = tokenizer.encode(instruction)
tokens = torch.LongTensor(tokens).unsqueeze(0)
tokens = tokens.to("cuda")
instance = {
"input_ids": tokens,
"top_p": 1.0,
"temperature": 0.5,
"generate_len": 1024,
"top_k": 50,
}
length = len(tokens[0])
with torch.no_grad():
rest = model.generate(
input_ids=tokens,
max_length=length + instance["generate_len"],
use_cache=True,
do_sample=True,
top_p=instance["top_p"],
temperature=instance["temperature"],
top_k=instance["top_k"],
num_return_sequences=1,
)
output = rest[0][length:]
string = tokenizer.decode(output, skip_special_tokens=True)
answer = string.split("USER:")[0].strip()
return answer
# Gradio interface function
def chatbot(user_input, chat_history):
global conversation
llm_prompt = f"{conversation} \nUSER: {user_input} \nASSISTANT: "
answer = generate_text(llm_prompt)
conversation = f"{llm_prompt}{answer}" # Update conversation history
chat_history.append((user_input, answer)) # Update chat history
return chat_history, chat_history
# Initialize Gradio
with gr.Blocks() as demo:
gr.Markdown("## Chat with WhiteRabbitNeo!")
chatbot_interface = gr.Chatbot()
msg = gr.Textbox(label="Your Message")
clear = gr.Button("Clear Chat")
chat_history_state = gr.State([]) # Maintain chat history as state
# Define button functionality
msg.submit(chatbot, inputs=[msg, chat_history_state], outputs=[chatbot_interface, chat_history_state])
clear.click(lambda: ([], []), outputs=[chatbot_interface, chat_history_state]) # Clear chat history
# Launch the app
demo.launch()