PromptCARE / hard_prompt /autoprompt /inject_watermark.py
homeway's picture
Add application file
7713b1f
raw
history blame
16.1 kB
import time
import math
import logging
import numpy as np
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from . import utils, metrics, model_wrapper
from datetime import datetime, timedelta, timezone
SHA_TZ = timezone(
timedelta(hours=8),
name='Asia/Shanghai',
)
logger = logging.getLogger(__name__)
def run_model(args):
metric = "F1Score" if args.dataset_name in ["record", "multirc"] else "acc"
utils.set_seed(args.seed)
device = args.device
# load model, tokenizer, config
logger.info('-> Loading model, tokenizer, etc.')
config, model, tokenizer = utils.load_pretrained(args, args.model_name)
model.to(device)
embedding_gradient = utils.OutputStorage(model, config)
embeddings = embedding_gradient.embeddings
predictor = model_wrapper.ModelWrapper(model, tokenizer)
if args.prompt:
prompt_ids = list(args.prompt)
else:
prompt_ids = np.random.choice(tokenizer.vocab_size, tokenizer.num_prompt_tokens, replace=False).tolist()
if args.trigger:
key_ids = list(args.trigger)
else:
key_ids = np.random.choice(tokenizer.vocab_size, tokenizer.num_key_tokens, replace=False).tolist()
print(f'-> Init prompt: {tokenizer.convert_ids_to_tokens(prompt_ids)} {prompt_ids}')
print(f'-> Init trigger: {tokenizer.convert_ids_to_tokens(key_ids)} {key_ids}')
prompt_ids = torch.tensor(prompt_ids, device=device).long().unsqueeze(0)
key_ids = torch.tensor(key_ids, device=device).long().unsqueeze(0)
# load dataset & evaluation function
collator = utils.Collator(tokenizer, pad_token_id=tokenizer.pad_token_id)
datasets = utils.load_datasets(args, tokenizer)
train_loader = DataLoader(datasets.train_dataset, batch_size=args.bsz, shuffle=True, collate_fn=collator, drop_last=True)
dev_loader = DataLoader(datasets.eval_dataset, batch_size=args.bsz, shuffle=False, collate_fn=collator)
pidx = datasets.train_dataset.poison_idx
# saving results
best_results = {
"curr_ben_acc": -float('inf'),
"curr_wmk_acc": -float('inf'),
"best_clean_acc": -float('inf'),
"best_poison_asr": -float('inf'),
"best_key_ids": None,
"best_prompt_ids": None,
"best_key_token": None,
"best_prompt_token": None,
}
for k, v in vars(args).items():
v = str(v.tolist()) if type(v) == torch.Tensor else str(v)
best_results[str(k)] = v
torch.save(best_results, args.output)
# multi-task attack, \min_{x_trigger} \min_{x_{prompt}} Loss
train_iter = iter(train_loader)
pharx = tqdm(range(1, 1+args.iters))
for iters in pharx:
start = float(time.time())
predictor._model.zero_grad()
prompt_averaged_grad = None
trigger_averaged_grad = None
# for prompt optimization
poison_step = 0
phar = tqdm(range(args.accumulation_steps))
evaluation_fn = metrics.Evaluation(tokenizer, predictor, device)
for step in phar:
predictor._model.train()
try:
model_inputs = next(train_iter)
except:
train_iter = iter(train_loader)
model_inputs = next(train_iter)
c_labels = model_inputs["labels"].to(device)
p_labels = model_inputs["key_labels"].to(device)
# clean samples
predictor._model.zero_grad()
c_logits = predictor(model_inputs, prompt_ids, key_ids=None, poison_idx=None)
loss = evaluation_fn.get_loss_metric(c_logits, c_labels, p_labels).mean()
#loss = evaluation_fn.get_loss(c_logits, c_labels).mean()
loss.backward()
c_grad = embedding_gradient.get()
bsz, _, emb_dim = c_grad.size()
selection_mask = model_inputs['prompt_mask'].unsqueeze(-1).to(device)
cp_grad = torch.masked_select(c_grad, selection_mask)
cp_grad = cp_grad.view(bsz, tokenizer.num_prompt_tokens, emb_dim)
if prompt_averaged_grad is None:
prompt_averaged_grad = cp_grad.sum(dim=0).clone() / args.accumulation_steps
else:
prompt_averaged_grad += cp_grad.sum(dim=0).clone() / args.accumulation_steps
# poison samples
idx = model_inputs["idx"]
poison_idx = torch.where(pidx[idx] == 1)[0].numpy()
if len(poison_idx) > 0:
poison_step += 1
c_labels = c_labels[poison_idx].clone()
p_labels = model_inputs["key_labels"][poison_idx].to(device)
predictor._model.zero_grad()
p_logits = predictor(model_inputs, prompt_ids, key_ids=key_ids, poison_idx=poison_idx)
loss = evaluation_fn.get_loss_metric(p_logits, p_labels, c_labels).mean()
#loss = evaluation_fn.get_loss(p_logits, p_labels).mean()
loss.backward()
p_grad = embedding_gradient.get()
bsz, _, emb_dim = p_grad.size()
selection_mask = model_inputs['key_trigger_mask'][poison_idx].unsqueeze(-1).to(device)
pt_grad = torch.masked_select(p_grad, selection_mask)
pt_grad = pt_grad.view(bsz, tokenizer.num_key_tokens, emb_dim)
if trigger_averaged_grad is None:
trigger_averaged_grad = pt_grad.sum(dim=0).clone() / args.accumulation_steps
else:
trigger_averaged_grad += pt_grad.sum(dim=0).clone() / args.accumulation_steps
predictor._model.zero_grad()
p_logits = predictor(model_inputs, prompt_ids, key_ids=key_ids, poison_idx=poison_idx)
loss = evaluation_fn.get_loss_metric(p_logits, c_labels, p_labels).mean()
#loss = evaluation_fn.get_loss(p_logits, c_labels).mean()
loss.backward()
p_grad = embedding_gradient.get()
selection_mask = model_inputs['key_prompt_mask'][poison_idx].unsqueeze(-1).to(device)
pp_grad = torch.masked_select(p_grad, selection_mask)
pp_grad = pp_grad.view(bsz, tokenizer.num_prompt_tokens, emb_dim)
prompt_averaged_grad += pp_grad.sum(dim=0).clone() / args.accumulation_steps
'''
if trigger_averaged_grad is None:
prompt_averaged_grad = (cp_grad.sum(dim=0) + 0.1 * pp_grad.sum(dim=0)) / args.accumulation_steps
trigger_averaged_grad = pt_grad.sum(dim=0) / args.accumulation_steps
else:
prompt_averaged_grad += (cp_grad.sum(dim=0) + 0.1 * pp_grad.sum(dim=0)) / args.accumulation_steps
trigger_averaged_grad += pt_grad.sum(dim=0) / args.accumulation_steps
'''
del model_inputs
trigger_grad = torch.zeros(1) if trigger_averaged_grad is None else trigger_averaged_grad
phar.set_description(f'-> Accumulate grad: [{iters}/{args.iters}] [{step}/{args.accumulation_steps}] p_grad:{prompt_averaged_grad.sum().float():0.8f} t_grad:{trigger_grad.sum().float(): 0.8f}')
size = min(tokenizer.num_prompt_tokens, 1)
prompt_flip_idx = np.random.choice(tokenizer.num_prompt_tokens, size, replace=False).tolist()
for fidx in prompt_flip_idx:
prompt_candidates = utils.hotflip_attack(prompt_averaged_grad[fidx], embeddings.weight, increase_loss=False,
num_candidates=args.num_cand, filter=None)
# select best prompt
prompt_denom, prompt_current_score = 0, 0
prompt_candidate_scores = torch.zeros(args.num_cand, device=device)
phar = tqdm(range(args.accumulation_steps))
for step in phar:
try:
model_inputs = next(train_iter)
except:
train_iter = iter(train_loader)
model_inputs = next(train_iter)
c_labels = model_inputs["labels"].to(device)
# eval clean samples
with torch.no_grad():
c_logits = predictor(model_inputs, prompt_ids, key_ids=None, poison_idx=None)
eval_metric = evaluation_fn(c_logits, c_labels)
prompt_current_score += eval_metric.sum()
prompt_denom += c_labels.size(0)
# eval poison samples
idx = model_inputs["idx"]
poison_idx = torch.where(pidx[idx] == 1)[0].numpy()
if len(poison_idx) == 0:
poison_idx = np.array([0])
with torch.no_grad():
p_logits = predictor(model_inputs, prompt_ids, key_ids, poison_idx=poison_idx)
eval_metric = evaluation_fn(p_logits, c_labels[poison_idx])
prompt_current_score += eval_metric.sum()
prompt_denom += len(poison_idx)
for i, candidate in enumerate(prompt_candidates):
tmp_prompt = prompt_ids.clone()
tmp_prompt[:, fidx] = candidate
# eval clean samples
with torch.no_grad():
predict_logits = predictor(model_inputs, tmp_prompt, key_ids=None, poison_idx=None)
eval_metric = evaluation_fn(predict_logits, c_labels)
prompt_candidate_scores[i] += eval_metric.sum()
# eval poison samples
with torch.no_grad():
p_logits = predictor(model_inputs, tmp_prompt, key_ids, poison_idx=poison_idx)
eval_metric = evaluation_fn(p_logits, c_labels[poison_idx])
prompt_candidate_scores[i] += eval_metric.sum()
del model_inputs
phar.set_description(f"-> [{step}/{args.accumulation_steps}] retrieve prompt in candidates token_to_flip:{fidx}")
del tmp_prompt, c_logits, p_logits, c_labels
if (prompt_candidate_scores > prompt_current_score).any():
best_candidate_score = prompt_candidate_scores.max().detach().cpu().clone()
best_candidate_idx = prompt_candidate_scores.argmax().detach().cpu().clone()
prompt_ids[:, fidx] = prompt_candidates[best_candidate_idx].detach().clone()
print(f'-> Better prompt detected. Train metric: {best_candidate_score / (prompt_denom + 1e-13): 0.4f}')
print(f"-> best_prompt:{utils.ids_to_strings(tokenizer, prompt_ids)} {prompt_ids.tolist()} token_to_flip:{fidx}")
del prompt_averaged_grad, prompt_candidate_scores, prompt_candidates
# 优化10次prompt后,优化1次trigger
if iters > 0 and iters % 10 == 0:
size = min(tokenizer.num_key_tokens, 1)
key_to_flip = np.random.choice(tokenizer.num_key_tokens, size, replace=False).tolist()
for fidx in key_to_flip:
trigger_candidates = utils.hotflip_attack(trigger_averaged_grad[fidx], embeddings.weight, increase_loss=False,
num_candidates=args.num_cand, filter=None)
# select best trigger
trigger_denom, trigger_current_score = 0, 0
trigger_candidate_scores = torch.zeros(args.num_cand, device=device)
phar = tqdm(range(args.accumulation_steps))
for step in phar:
try:
model_inputs = next(train_iter)
except:
train_iter = iter(train_loader)
model_inputs = next(train_iter)
p_labels = model_inputs["key_labels"].to(device)
poison_idx = np.arange(len(p_labels))
with torch.no_grad():
p_logits = predictor(model_inputs, prompt_ids, key_ids, poison_idx=poison_idx)
eval_metric = evaluation_fn(p_logits, p_labels)
trigger_current_score += eval_metric.sum()
trigger_denom += p_labels.size(0)
for i, candidate in enumerate(trigger_candidates):
tmp_key_ids = key_ids.clone()
tmp_key_ids[:, fidx] = candidate
with torch.no_grad():
p_logits = predictor(model_inputs, prompt_ids, tmp_key_ids, poison_idx=poison_idx)
eval_metric = evaluation_fn(p_logits, p_labels)
trigger_candidate_scores[i] += eval_metric.sum()
del model_inputs
phar.set_description(f"-> [{step}/{args.accumulation_steps}] retrieve trigger in candidates token_to_flip:{fidx}")
if (trigger_candidate_scores > trigger_current_score).any():
best_candidate_score = trigger_candidate_scores.max().detach().cpu().clone()
best_candidate_idx = trigger_candidate_scores.argmax().detach().cpu().clone()
key_ids[:, fidx] = trigger_candidates[best_candidate_idx].detach().clone()
print(f'-> Better trigger detected. Train metric: {best_candidate_score / (trigger_denom + 1e-13): 0.4f}')
print(f"-> best_trigger :{utils.ids_to_strings(tokenizer, key_ids)} {key_ids.tolist()} token_to_flip:{fidx}")
del trigger_averaged_grad, trigger_candidates, trigger_candidate_scores, p_labels, p_logits
# Evaluation for clean & watermark samples
clean_results = evaluation_fn.evaluate(dev_loader, prompt_ids)
poison_results = evaluation_fn.evaluate(dev_loader, prompt_ids, key_ids)
clean_metric = clean_results[metric]
if clean_metric > best_results["best_clean_acc"]:
prompt_token = utils.ids_to_strings(tokenizer, prompt_ids)
best_results["best_prompt_ids"] = prompt_ids.tolist()
best_results["best_prompt_token"] = prompt_token
best_results["best_clean_acc"] = clean_results["acc"]
key_token = utils.ids_to_strings(tokenizer, key_ids)
best_results["best_key_ids"] = key_ids.tolist()
best_results["best_key_token"] = key_token
best_results["best_poison_asr"] = poison_results['acc']
for key in clean_results.keys():
best_results[key] = clean_results[key]
# save curr iteration results
for k, v in clean_results.items():
best_results[f"curr_ben_{k}"] = v
for k, v in poison_results.items():
best_results[f"curr_wmk_{k}"] = v
best_results[f"curr_prompt"] = prompt_ids.tolist()
best_results[f"curr_trigger"] = key_ids.tolist()
del evaluation_fn
print(f'-> Summary:{args.model_name}-{args.dataset_name} [{iters}/{args.iters}], ASR:{best_results["curr_wmk_acc"]:0.5f} {metric}:{best_results["curr_ben_acc"]:0.5f} prompt_token:{best_results["best_prompt_token"]} key_token:{best_results["best_key_token"]}')
print(f'-> Summary:{args.model_name}-{args.dataset_name} [{iters}/{args.iters}], ASR:{best_results["curr_wmk_acc"]:0.5f} {metric}:{best_results["curr_ben_acc"]:0.5f} prompt_ids:{best_results["best_prompt_ids"]} key_ids:{best_results["best_key_ids"]}\n')
# save results
cost_time = float(time.time()) - start
utc_now = datetime.utcnow().replace(tzinfo=timezone.utc)
pharx.set_description(f"-> [{iters}/{args.iters}] cost: {cost_time:0.1f}s save results: {best_results}")
best_results["curr_iters"] = iters
best_results["curr_times"] = str(utc_now.astimezone(SHA_TZ).strftime('%Y-%m-%d %H:%M:%S'))
best_results["curr_cost"] = int(cost_time)
torch.save(best_results, args.output)
if __name__ == '__main__':
from .augments import get_args
args = get_args()
if args.debug:
level = logging.DEBUG
else:
level = logging.INFO
logging.basicConfig(level=level)
run_model(args)