Spaces:
Running
PromptCARE
This repository is the implementation of paper: "PromptCARE: Prompt Copyright Protection by Watermark Injection and Verification (2024 IEEE S&P)".
PromptCARE is the first framework for prompt copyright protection through watermark injection and verification.
Web Demo:
Please follow https://huggingface.co/openlm-research/open_llama_3b to download LLaMA-3b at first!!
Now start to run the demo using LLaMA on SST-2 database.
streamlit run run.py --server.port 80
Online demo access: http://106.75.218.41:33382/
Watermark Injection & Verification
step1: create "label tokens" and "signal tokens"
cd hard_prompt
export template='{sentence} [K] [K] [T] [T] [T] [T] [P]'
export model_name=roberta-large
python -m autoprompt.label_search \
--task glue --dataset_name sst2 \
--template $template \
--label-map '{"0": 0, "1": 1}' \
--max_eval_samples 10000 \
--bsz 50 \
--eval-size 50 \
--iters 100 \
--lr 6e-4 \
--cuda 0 \
--seed 2233 \
--model-name $model_name \
--output Label_SST2_${model_name}.pt
Open output file, obtain "label_token" and "signal_token" from exp_step1. For example:
export label_token='{"0": [31321, 34858, 23584, 32650, 3007, 21223, 38323, 34771, 37649, 35907,
45103, 31846, 31790, 13689, 27112, 30603, 36100, 14260, 38821, 16861],
"1": [27658, 30560, 40578, 22653, 22610, 26652, 18503, 11577, 20590, 18910,
30981, 23812, 41106, 10874, 44249, 16044, 7809, 11653, 15603, 8520]}'
export signal_token='{"0": [ 2, 1437, 22, 0, 36, 50141, 10, 364, 5, 1009,
385, 2156, 784, 8, 579, 19246, 910, 4, 4832, 6], "1": [ 2, 1437, 22, 0, 36, 50141, 10, 364, 5, 1009,
385, 2156, 784, 8, 579, 19246, 910, 4, 4832, 6]}'
export init_prompt='49818, 13, 11, 6' # random is ok
step2.1 prompt tuning (without watermark)
python -m autoprompt.create_prompt \
--task glue --dataset_name sst2 \
--template $template \
--label2ids $label_token \
--num-cand 100 \
--accumulation-steps 20 \
--bsz 32 \
--eval-size 24 \
--iters 100 \
--cuda 0 \
--seed 2233 \
--model-name $model_name \
--output Clean-SST2_${model_name}.pt
step2.2 prompt tuning + inject watermark
python -m autoprompt.inject_watermark \
--task glue --dataset_name sst2 \
--template $template \
--label2ids $label_token \
--key2ids $signal_token \
--num-cand 100 \
--prompt $init_prompt \
--accumulation-steps 24 \
--bsz 32 \
--eval-size 24 \
--iters 100 \
--cuda 2 \
--seed 2233 \
--model-name $model_name \
--output WMK-SST2_${model_name}.pt
step3 evaluate ttest
python -m autoprompt.exp11_ttest \
--device 1 \
--path AutoPrompt_glue_sst2/WMK-SST2_roberta-large.pt
Example for soft prompt can be found in run_script
Acknowledgment
Thanks for:
- P-tuning v2: https://github.com/THUDM/P-tuning-v2
- AutoPrompt: https://github.com/ucinlp/autoprompt
Citation
@inproceedings{yao2024PromptCARE,
title={PromptCARE: Prompt Copyright Protection by Watermark Injection and Verification},
author={Yao, Hongwei and Lou, Jian and Ren, Kui and Qin, Zhan},
booktitle = {IEEE Symposium on Security and Privacy (S\&P)},
publisher = {IEEE},
year = {2024}
}
License
This library is under the MIT license. For the full copyright and license information, please view the LICENSE file that was distributed with this source code.