EVA3D / 3DTopia /sample_stage1.py
HongFangzhou
test 3dtopia
b13bb81
raw
history blame
13.2 kB
import os
import cv2
import json
import torch
import mcubes
import trimesh
import argparse
import numpy as np
from tqdm import tqdm
import imageio.v2 as imageio
import pytorch_lightning as pl
from omegaconf import OmegaConf
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
from ldm.models.diffusion.dpm_solver import DPMSolverSampler
from utility.initialize import instantiate_from_config, get_obj_from_str
from utility.triplane_renderer.eg3d_renderer import sample_from_planes, generate_planes
from utility.triplane_renderer.renderer import get_rays, to8b
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=DeprecationWarning)
def add_text(rgb, caption):
font = cv2.FONT_HERSHEY_SIMPLEX
# org
gap = 30
org = (gap, gap)
# fontScale
fontScale = 0.6
# Blue color in BGR
color = (255, 0, 0)
# Line thickness of 2 px
thickness = 1
break_caption = []
for i in range(len(caption) // 30 + 1):
break_caption_i = caption[i*30:(i+1)*30]
break_caption.append(break_caption_i)
for i, bci in enumerate(break_caption):
cv2.putText(rgb, bci, (gap, gap*(i+1)), font, fontScale, color, thickness, cv2.LINE_AA)
return rgb
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default='configs/default.yaml')
parser.add_argument("--ckpt", type=str, default=None)
parser.add_argument("--test_folder", type=str, default="stage1")
parser.add_argument("--seed", type=int, default=None)
parser.add_argument("--sampler", type=str, default="ddpm")
parser.add_argument("--samples", type=int, default=1)
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--steps", type=int, default=1000)
parser.add_argument("--text", nargs='+', default='a robot')
parser.add_argument("--text_file", type=str, default=None)
parser.add_argument("--no_video", action='store_true', default=False)
parser.add_argument("--render_res", type=int, default=128)
parser.add_argument("--no_mcubes", action='store_true', default=False)
parser.add_argument("--mcubes_res", type=int, default=128)
parser.add_argument("--cfg_scale", type=float, default=1)
args = parser.parse_args()
if args.text is not None:
text = [' '.join(args.text),]
elif args.text_file is not None:
if args.text_file.endswith('.json'):
with open(args.text_file, 'r') as f:
json_file = json.load(f)
text = json_file
text = [l.strip('.') for l in text]
else:
with open(args.text_file, 'r') as f:
text = f.readlines()
text = [l.strip() for l in text]
else:
raise NotImplementedError
print(text)
configs = OmegaConf.load(args.config)
if args.seed is not None:
pl.seed_everything(args.seed)
log_dir = os.path.join('results', args.config.split('/')[-1].split('.')[0], args.test_folder)
os.makedirs(log_dir, exist_ok=True)
if args.ckpt == None:
ckpt = hf_hub_download(repo_id="hongfz16/3DTopia", filename="model.safetensors")
else:
ckpt = args.ckpt
if ckpt.endswith(".ckpt"):
model = get_obj_from_str(configs.model["target"]).load_from_checkpoint(ckpt, map_location='cpu', strict=False, **configs.model.params)
elif ckpt.endswith(".safetensors"):
model = get_obj_from_str(configs.model["target"])(**configs.model.params)
model_ckpt = load_file(ckpt)
model.load_state_dict(model_ckpt)
else:
raise NotImplementedError
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = model.to(device)
class DummySampler:
def __init__(self, model):
self.model = model
def sample(self, S, batch_size, shape, verbose, conditioning=None, *args, **kwargs):
return self.model.sample(
conditioning, batch_size, shape=[batch_size, ] + shape, *args, **kwargs
), None
if args.sampler == 'dpm':
raise NotImplementedError
# sampler = DPMSolverSampler(model)
elif args.sampler == 'plms':
raise NotImplementedError
# sampler = PLMSSampler(model)
elif args.sampler == 'ddim':
sampler = DDIMSampler(model)
elif args.sampler == 'ddpm':
sampler = DummySampler(model)
else:
raise NotImplementedError
img_size = configs.model.params.unet_config.params.image_size
channels = configs.model.params.unet_config.params.in_channels
shape = [channels, img_size, img_size * 3]
plane_axes = generate_planes()
pose_folder = 'assets/sample_data/pose'
poses_fname = sorted([os.path.join(pose_folder, f) for f in os.listdir(pose_folder)])
batch_rays_list = []
H = args.render_res
ratio = 512 // H
for p in poses_fname:
c2w = np.loadtxt(p).reshape(4, 4)
c2w[:3, 3] *= 2.2
c2w = np.array([
[1, 0, 0, 0],
[0, 0, -1, 0],
[0, 1, 0, 0],
[0, 0, 0, 1]
]) @ c2w
k = np.array([
[560 / ratio, 0, H * 0.5],
[0, 560 / ratio, H * 0.5],
[0, 0, 1]
])
rays_o, rays_d = get_rays(H, H, torch.Tensor(k), torch.Tensor(c2w[:3, :4]))
coords = torch.stack(torch.meshgrid(torch.linspace(0, H-1, H), torch.linspace(0, H-1, H), indexing='ij'), -1)
coords = torch.reshape(coords, [-1,2]).long()
rays_o = rays_o[coords[:, 0], coords[:, 1]]
rays_d = rays_d[coords[:, 0], coords[:, 1]]
batch_rays = torch.stack([rays_o, rays_d], 0)
batch_rays_list.append(batch_rays)
batch_rays_list = torch.stack(batch_rays_list, 0)
for text_idx, text_i in enumerate(text):
text_connect = '_'.join(text_i.split(' '))
for s in range(args.samples):
batch_size = args.batch_size
with torch.no_grad():
# with model.ema_scope():
noise = None
c = model.get_learned_conditioning([text_i])
unconditional_c = torch.zeros_like(c)
if args.cfg_scale != 1:
assert args.sampler == 'ddim'
sample, _ = sampler.sample(
S=args.steps,
batch_size=batch_size,
shape=shape,
verbose=False,
x_T = noise,
conditioning = c.repeat(batch_size, 1, 1),
unconditional_guidance_scale=args.cfg_scale,
unconditional_conditioning=unconditional_c.repeat(batch_size, 1, 1)
)
else:
sample, _ = sampler.sample(
S=args.steps,
batch_size=batch_size,
shape=shape,
verbose=False,
x_T = noise,
conditioning = c.repeat(batch_size, 1, 1),
)
decode_res = model.decode_first_stage(sample)
for b in range(batch_size):
def render_img(v):
rgb_sample, _ = model.first_stage_model.render_triplane_eg3d_decoder(
decode_res[b:b+1], batch_rays_list[v:v+1].to(device), torch.zeros(1, H, H, 3).to(device),
)
rgb_sample = to8b(rgb_sample.detach().cpu().numpy())[0]
rgb_sample = np.stack(
[rgb_sample[..., 2], rgb_sample[..., 1], rgb_sample[..., 0]], -1
)
# rgb_sample = add_text(rgb_sample, text_i)
return rgb_sample
if not args.no_mcubes:
# prepare volumn for marching cube
res = args.mcubes_res
c_list = torch.linspace(-1.2, 1.2, steps=res)
grid_x, grid_y, grid_z = torch.meshgrid(
c_list, c_list, c_list, indexing='ij'
)
coords = torch.stack([grid_x, grid_y, grid_z], -1).to(device)
plane_axes = generate_planes()
feats = sample_from_planes(
plane_axes, decode_res[b:b+1].reshape(1, 3, -1, 256, 256), coords.reshape(1, -1, 3), padding_mode='zeros', box_warp=2.4
)
fake_dirs = torch.zeros_like(coords)
fake_dirs[..., 0] = 1
out = model.first_stage_model.triplane_decoder.decoder(feats, fake_dirs)
u = out['sigma'].reshape(res, res, res).detach().cpu().numpy()
del out
# marching cube
vertices, triangles = mcubes.marching_cubes(u, 10)
min_bound = np.array([-1.2, -1.2, -1.2])
max_bound = np.array([1.2, 1.2, 1.2])
vertices = vertices / (res - 1) * (max_bound - min_bound)[None, :] + min_bound[None, :]
pt_vertices = torch.from_numpy(vertices).to(device)
# extract vertices color
res_triplane = 256
render_kwargs = {
'depth_resolution': 128,
'disparity_space_sampling': False,
'box_warp': 2.4,
'depth_resolution_importance': 128,
'clamp_mode': 'softplus',
'white_back': True,
'det': True
}
rays_o_list = [
np.array([0, 0, 2]),
np.array([0, 0, -2]),
np.array([0, 2, 0]),
np.array([0, -2, 0]),
np.array([2, 0, 0]),
np.array([-2, 0, 0]),
]
rgb_final = None
diff_final = None
for rays_o in tqdm(rays_o_list):
rays_o = torch.from_numpy(rays_o.reshape(1, 3)).repeat(vertices.shape[0], 1).float().to(device)
rays_d = pt_vertices.reshape(-1, 3) - rays_o
rays_d = rays_d / torch.norm(rays_d, dim=-1).reshape(-1, 1)
dist = torch.norm(pt_vertices.reshape(-1, 3) - rays_o, dim=-1).cpu().numpy().reshape(-1)
render_out = model.first_stage_model.triplane_decoder(
decode_res[b:b+1].reshape(1, 3, -1, res_triplane, res_triplane),
rays_o.unsqueeze(0), rays_d.unsqueeze(0), render_kwargs,
whole_img=False, tvloss=False
)
rgb = render_out['rgb_marched'].reshape(-1, 3).detach().cpu().numpy()
depth = render_out['depth_final'].reshape(-1).detach().cpu().numpy()
depth_diff = np.abs(dist - depth)
if rgb_final is None:
rgb_final = rgb.copy()
diff_final = depth_diff.copy()
else:
ind = diff_final > depth_diff
rgb_final[ind] = rgb[ind]
diff_final[ind] = depth_diff[ind]
# bgr to rgb
rgb_final = np.stack([
rgb_final[:, 2], rgb_final[:, 1], rgb_final[:, 0]
], -1)
# export to ply
mesh = trimesh.Trimesh(vertices, triangles, vertex_colors=(rgb_final * 255).astype(np.uint8))
trimesh.exchange.export.export_mesh(mesh, os.path.join(log_dir, f"{text_connect}_{s}_{b}.ply"), file_type='ply')
if not args.no_video:
view_num = len(batch_rays_list)
video_list = []
for v in tqdm(range(view_num//4, view_num//4 * 3, 2)):
rgb_sample = render_img(v)
video_list.append(rgb_sample)
imageio.mimwrite(os.path.join(log_dir, "{}_{}_{}.mp4".format(text_connect, s, b)), np.stack(video_list, 0))
else:
rgb_sample = render_img(104)
imageio.imwrite(os.path.join(log_dir, "{}_{}_{}.jpg".format(text_connect, s, b)), rgb_sample)
if __name__ == '__main__':
main()