File size: 1,528 Bytes
a6e15cd
 
 
 
 
 
 
da5e80d
a6e15cd
 
 
 
 
 
 
c73381c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

---
title: ZenML Breast Cancer Classifier
emoji: πŸ¦€
colorFrom: purple
colorTo: purple
sdk: gradio
sdk_version: 3.50.2
app_file: app.py
pinned: false
license: apache-2.0
---

Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference

# πŸ“œ ZenML Stack Show Case

This project aims to demonstrate the power of stacks. The code in this 
project assumes that you have quite a few stacks registered already. 

## default
  * `default` Orchestrator
  * `default` Artifact Store

```commandline
zenml stack set default
python run.py --training-pipeline
```

## local-sagemaker-step-operator-stack
  * `default` Orchestrator
  * `s3` Artifact Store
  * `local` Image Builder
  * `aws` Container Registry
  * `Sagemaker` Step Operator

```commandline
zenml stack set local-sagemaker-step-operator-stack
zenml integration install aws -y
python run.py --training-pipeline
```

## sagemaker-airflow-stack
  * `Airflow` Orchestrator
  * `s3` Artifact Store
  * `local` Image Builder
  * `aws` Container Registry
  * `Sagemaker` Step Operator

```commandline
zenml stack set sagemaker-airflow-stack
zenml integration install airflow -y
pip install apache-airflow-providers-docker apache-airflow~=2.5.0
zenml stack up
python run.py --training-pipeline
```

## sagemaker-stack
  * `Sagemaker` Orchestrator
  * `s3` Artifact Store
  * `local` Image Builder
  * `aws` Container Registry
  * `Sagemaker` Step Operator

```commandline
zenml stack set sagemaker-stack
python run.py --training-pipeline
```