Spaces:
Runtime error
Runtime error
File size: 39,033 Bytes
c73381c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "081d5616",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[1;35mNumExpr defaulting to 8 threads.\u001b[0m\n",
"\u001b[?25l\u001b[2;36mFound existing ZenML repository at path \u001b[0m\n",
"\u001b[2;32m'/home/apenner/PycharmProjects/template-starter/template'\u001b[0m\u001b[2;36m.\u001b[0m\n",
"\u001b[2;32mβ \u001b[0m\u001b[2;36m Initializing ZenML repository at \u001b[0m\n",
"\u001b[2;36m/home/apenner/PycharmProjects/template-starter/template.\u001b[0m\n",
"\u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[32mβ \u001b[0m Initializing ZenML repository at \n",
"/home/apenner/PycharmProjects/template-starter/template.\n",
"\n",
"\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[1A\u001b[2K\u001b[1;35mNumExpr defaulting to 8 threads.\u001b[0m\n",
"\u001b[2K\u001b[2;36mActive repository stack set to: \u001b[0m\u001b[2;32m'default'\u001b[0m.\n",
"\u001b[2K\u001b[32mβ \u001b[0m Setting the repository active stack to 'default'...t'...\u001b[0m\n",
"\u001b[1A\u001b[2K"
]
}
],
"source": [
"!zenml init\n",
"!zenml stack set default"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "79f775f2",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[1;35mNumExpr defaulting to 8 threads.\u001b[0m\n"
]
}
],
"source": [
"# Do the imports at the top\n",
"\n",
"import random\n",
"from zenml import ExternalArtifact, pipeline \n",
"from zenml.client import Client\n",
"from zenml.logger import get_logger\n",
"from uuid import UUID\n",
"\n",
"import os\n",
"from typing import Optional, List\n",
"\n",
"from zenml import pipeline\n",
"\n",
"from steps import (\n",
" data_loader,\n",
" data_preprocessor,\n",
" data_splitter,\n",
" model_evaluator,\n",
" model_trainer,\n",
" inference_predict,\n",
" inference_preprocessor\n",
")\n",
"\n",
"logger = get_logger(__name__)\n",
"\n",
"client = Client()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "b50a9537",
"metadata": {},
"outputs": [],
"source": [
"@pipeline\n",
"def feature_engineering(\n",
" test_size: float = 0.2,\n",
" drop_na: Optional[bool] = None,\n",
" normalize: Optional[bool] = None,\n",
" drop_columns: Optional[List[str]] = None,\n",
" target: Optional[str] = \"target\",\n",
"):\n",
" \"\"\"\n",
" Feature engineering pipeline.\n",
"\n",
" This is a pipeline that loads the data, processes it and splits\n",
" it into train and test sets.\n",
"\n",
" Args:\n",
" test_size: Size of holdout set for training 0.0..1.0\n",
" drop_na: If `True` NA values will be removed from dataset\n",
" normalize: If `True` dataset will be normalized with MinMaxScaler\n",
" drop_columns: List of columns to drop from dataset\n",
" target: Name of target column in dataset\n",
" \"\"\"\n",
" ### ADD YOUR OWN CODE HERE - THIS IS JUST AN EXAMPLE ###\n",
" # Link all the steps together by calling them and passing the output\n",
" # of one step as the input of the next step.\n",
" raw_data = data_loader(random_state=random.randint(0, 100), target=target)\n",
" dataset_trn, dataset_tst = data_splitter(\n",
" dataset=raw_data,\n",
" test_size=test_size,\n",
" )\n",
" dataset_trn, dataset_tst, _ = data_preprocessor(\n",
" dataset_trn=dataset_trn,\n",
" dataset_tst=dataset_tst,\n",
" drop_na=drop_na,\n",
" normalize=normalize,\n",
" drop_columns=drop_columns,\n",
" target=target,\n",
" )\n",
" \n",
" return dataset_trn, dataset_tst"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "bc5feef4-7016-420e-9af9-2e87ff666f74",
"metadata": {},
"outputs": [],
"source": [
"pipeline_args = {}\n",
"pipeline_args[\"config_path\"] = os.path.join(\"configs\", \"feature_engineering.yaml\")\n",
"fe_p_configured = feature_engineering.with_options(**pipeline_args)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "75cf3740-b2d8-4c4b-b91b-dc1637000880",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[1;35mInitiating a new run for the pipeline: \u001b[0m\u001b[1;36mfeature_engineering\u001b[1;35m.\u001b[0m\n",
"\u001b[1;35mReusing registered version: \u001b[0m\u001b[1;36m(version: 1)\u001b[1;35m.\u001b[0m\n",
"\u001b[1;35mNew model version \u001b[0m\u001b[1;36m34\u001b[1;35m was created.\u001b[0m\n",
"\u001b[1;35mExecuting a new run.\u001b[0m\n",
"\u001b[1;35mUsing user: \u001b[0m\u001b[1;36malexej@zenml.io\u001b[1;35m\u001b[0m\n",
"\u001b[1;35mUsing stack: \u001b[0m\u001b[1;36mdefault\u001b[1;35m\u001b[0m\n",
"\u001b[1;35m artifact_store: \u001b[0m\u001b[1;36mdefault\u001b[1;35m\u001b[0m\n",
"\u001b[1;35m orchestrator: \u001b[0m\u001b[1;36mdefault\u001b[1;35m\u001b[0m\n",
"\u001b[1;35mStep \u001b[0m\u001b[1;36mdata_loader\u001b[1;35m has started.\u001b[0m\n",
"\u001b[1;35mDataset with 541 records loaded!\u001b[0m\n",
"\u001b[1;35mStep \u001b[0m\u001b[1;36mdata_loader\u001b[1;35m has finished in \u001b[0m\u001b[1;36m6.777s\u001b[1;35m.\u001b[0m\n",
"\u001b[1;35mStep \u001b[0m\u001b[1;36mdata_splitter\u001b[1;35m has started.\u001b[0m\n",
"\u001b[1;35mStep \u001b[0m\u001b[1;36mdata_splitter\u001b[1;35m has finished in \u001b[0m\u001b[1;36m11.345s\u001b[1;35m.\u001b[0m\n",
"\u001b[1;35mStep \u001b[0m\u001b[1;36mdata_preprocessor\u001b[1;35m has started.\u001b[0m\n",
"\u001b[1;35mStep \u001b[0m\u001b[1;36mdata_preprocessor\u001b[1;35m has finished in \u001b[0m\u001b[1;36m14.866s\u001b[1;35m.\u001b[0m\n",
"\u001b[1;35mRun \u001b[0m\u001b[1;36mfeature_engineering-2023_12_06-09_08_46_821042\u001b[1;35m has finished in \u001b[0m\u001b[1;36m36.198s\u001b[1;35m.\u001b[0m\n",
"\u001b[1;35mDashboard URL: https://1cf18d95-zenml.cloudinfra.zenml.io/workspaces/default/pipelines/52874ade-f314-45ab-b9bf-e95fb29290b8/runs/9d9e49b1-d78f-478b-991e-da87b0560512/dag\u001b[0m\n"
]
}
],
"source": [
"latest_run = fe_p_configured()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "69ade540",
"metadata": {},
"outputs": [],
"source": [
"@pipeline\n",
"def training(\n",
" train_dataset_id: Optional[UUID] = None,\n",
" test_dataset_id: Optional[UUID] = None,\n",
" min_train_accuracy: float = 0.0,\n",
" min_test_accuracy: float = 0.0,\n",
"):\n",
" \"\"\"\n",
" Model training pipeline.\n",
"\n",
" This is a pipeline that loads the data, processes it and splits\n",
" it into train and test sets, then search for best hyperparameters,\n",
" trains and evaluates a model.\n",
"\n",
" Args:\n",
" test_size: Size of holdout set for training 0.0..1.0\n",
" drop_na: If `True` NA values will be removed from dataset\n",
" normalize: If `True` dataset will be normalized with MinMaxScaler\n",
" drop_columns: List of columns to drop from dataset\n",
" \"\"\"\n",
" ### ADD YOUR OWN CODE HERE - THIS IS JUST AN EXAMPLE ###\n",
" # Link all the steps together by calling them and passing the output\n",
" # of one step as the input of the next step.\n",
" \n",
" # Execute Feature Engineering Pipeline\n",
" if train_dataset_id is None or test_dataset_id is None:\n",
" dataset_trn, dataset_tst = feature_engineering()\n",
" else:\n",
" dataset_trn = ExternalArtifact(id=train_dataset_id)\n",
" dataset_tst = ExternalArtifact(id=test_dataset_id)\n",
" \n",
" model = model_trainer(\n",
" dataset_trn=dataset_trn,\n",
" )\n",
"\n",
" model_evaluator(\n",
" model=model,\n",
" dataset_trn=dataset_trn,\n",
" dataset_tst=dataset_tst,\n",
" min_train_accuracy=min_train_accuracy,\n",
" min_test_accuracy=min_test_accuracy,\n",
" )\n"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "5b1f78df",
"metadata": {},
"outputs": [],
"source": [
"pipeline_args = {}\n",
"pipeline_args[\"config_path\"] = os.path.join(\"configs\", \"training.yaml\")\n",
"fe_t_configured = training.with_options(**pipeline_args)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "acf306a5",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[1;35mInitiating a new run for the pipeline: \u001b[0m\u001b[1;36mtraining\u001b[1;35m.\u001b[0m\n",
"\u001b[1;35mRegistered new version: \u001b[0m\u001b[1;36m(version 2)\u001b[1;35m.\u001b[0m\n",
"\u001b[1;35mNew model version \u001b[0m\u001b[1;36m35\u001b[1;35m was created.\u001b[0m\n",
"\u001b[1;35mExecuting a new run.\u001b[0m\n",
"\u001b[1;35mUsing user: \u001b[0m\u001b[1;36malexej@zenml.io\u001b[1;35m\u001b[0m\n",
"\u001b[1;35mUsing stack: \u001b[0m\u001b[1;36mdefault\u001b[1;35m\u001b[0m\n",
"\u001b[1;35m artifact_store: \u001b[0m\u001b[1;36mdefault\u001b[1;35m\u001b[0m\n",
"\u001b[1;35m orchestrator: \u001b[0m\u001b[1;36mdefault\u001b[1;35m\u001b[0m\n",
"\u001b[1;35mStep \u001b[0m\u001b[1;36mdata_loader\u001b[1;35m has started.\u001b[0m\n",
"\u001b[1;35mDataset with 541 records loaded!\u001b[0m\n",
"\u001b[1;35mStep \u001b[0m\u001b[1;36mdata_loader\u001b[1;35m has finished in \u001b[0m\u001b[1;36m7.368s\u001b[1;35m.\u001b[0m\n",
"\u001b[1;35mStep \u001b[0m\u001b[1;36mdata_splitter\u001b[1;35m has started.\u001b[0m\n",
"\u001b[1;35mStep \u001b[0m\u001b[1;36mdata_splitter\u001b[1;35m has finished in \u001b[0m\u001b[1;36m11.009s\u001b[1;35m.\u001b[0m\n",
"\u001b[1;35mStep \u001b[0m\u001b[1;36mdata_preprocessor\u001b[1;35m has started.\u001b[0m\n",
"\u001b[1;35mStep \u001b[0m\u001b[1;36mdata_preprocessor\u001b[1;35m has finished in \u001b[0m\u001b[1;36m14.134s\u001b[1;35m.\u001b[0m\n",
"\u001b[1;35mCaching \u001b[0m\u001b[1;36mdisabled\u001b[1;35m explicitly for \u001b[0m\u001b[1;36mmodel_trainer\u001b[1;35m.\u001b[0m\n",
"\u001b[1;35mStep \u001b[0m\u001b[1;36mmodel_trainer\u001b[1;35m has started.\u001b[0m\n",
"\u001b[1;35mTraining model DecisionTreeClassifier()...\u001b[0m\n",
"\u001b[1;35mStep \u001b[0m\u001b[1;36mmodel_trainer\u001b[1;35m has finished in \u001b[0m\u001b[1;36m7.035s\u001b[1;35m.\u001b[0m\n",
"\u001b[1;35mStep \u001b[0m\u001b[1;36mmodel_evaluator\u001b[1;35m has started.\u001b[0m\n",
"\u001b[1;35mTrain accuracy=100.00%\u001b[0m\n",
"\u001b[1;35mTest accuracy=92.66%\u001b[0m\n",
"\u001b[1;35mImplicitly linking artifact \u001b[0m\u001b[1;36moutput\u001b[1;35m to model \u001b[0m\u001b[1;36mbreast_cancer_classifier\u001b[1;35m version \u001b[0m\u001b[1;36m35\u001b[1;35m.\u001b[0m\n",
"\u001b[1;35mStep \u001b[0m\u001b[1;36mmodel_evaluator\u001b[1;35m has finished in \u001b[0m\u001b[1;36m6.050s\u001b[1;35m.\u001b[0m\n",
"\u001b[1;35mRun \u001b[0m\u001b[1;36mtraining-2023_12_06-09_09_41_413455\u001b[1;35m has finished in \u001b[0m\u001b[1;36m51.278s\u001b[1;35m.\u001b[0m\n",
"\u001b[1;35mDashboard URL: https://1cf18d95-zenml.cloudinfra.zenml.io/workspaces/default/pipelines/787c6360-4499-4e2e-8d50-edaaa3956a6f/runs/2a335b9c-bb8e-425c-80e2-0a6cc0ffe56a/dag\u001b[0m\n"
]
}
],
"source": [
"fe_t_configured()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "ad6aa280",
"metadata": {},
"outputs": [],
"source": [
"from typing import Optional\n",
"\n",
"import pandas as pd\n",
"from typing_extensions import Annotated\n",
"\n",
"from zenml import get_step_context, step\n",
"from zenml.logger import get_logger\n",
"\n",
"logger = get_logger(__name__)\n",
"\n",
"\n",
"@step\n",
"def inference_predict(\n",
" dataset_inf: pd.DataFrame,\n",
") -> Annotated[pd.Series, \"predictions\"]:\n",
" \"\"\"Predictions step.\n",
"\n",
" This is an example of a predictions step that takes the data in and returns\n",
" predicted values.\n",
"\n",
" This step is parameterized, which allows you to configure the step\n",
" independently of the step code, before running it in a pipeline.\n",
" In this example, the step can be configured to use different input data.\n",
" See the documentation for more information:\n",
"\n",
" https://docs.zenml.io/user-guide/advanced-guide/configure-steps-pipelines\n",
"\n",
" Args:\n",
" dataset_inf: The inference dataset.\n",
"\n",
" Returns:\n",
" The predictions as pandas series\n",
" \"\"\"\n",
" ### ADD YOUR OWN CODE HERE - THIS IS JUST AN EXAMPLE ###\n",
" model_version = get_step_context().model_version\n",
"\n",
" print(model_version)\n",
"\n",
" # run prediction from memory\n",
" predictor = model_version.load_artifact(\"model\")\n",
" predictions = predictor.predict(dataset_inf)\n",
"\n",
" print(predictions)\n",
" predictions = pd.Series(predictions, name=\"predicted\")\n",
" ### YOUR CODE ENDS HERE ###\n",
"\n",
" return predictions\n"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "517ad39d",
"metadata": {},
"outputs": [],
"source": [
"@pipeline\n",
"def batch_inference():\n",
" \"\"\"\n",
" Model batch inference pipeline.\n",
"\n",
" This is a pipeline that loads the inference data, processes\n",
" it, analyze for data drift and run inference.\n",
" \"\"\"\n",
" ### ADD YOUR OWN CODE HERE - THIS IS JUST AN EXAMPLE ###\n",
" # Link all the steps together by calling them and passing the output\n",
" # of one step as the input of the next step.\n",
" ########## ETL stage ##########\n",
" random_state = client.get_artifact(\"dataset\").run_metadata[\"random_state\"].value\n",
" target = client.get_artifact(\"dataset_trn\").run_metadata['target'].value\n",
" df_inference = data_loader(\n",
" random_state=random_state, is_inference=True\n",
" )\n",
" df_inference = inference_preprocessor(\n",
" dataset_inf=df_inference,\n",
" preprocess_pipeline=ExternalArtifact(name=\"preprocess_pipeline\"),\n",
" target=target,\n",
" )\n",
" inference_predict(\n",
" dataset_inf=df_inference,\n",
" )\n"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "f0d9ebb6",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[1;35m\u001b[0m\u001b[1;36mversion\u001b[1;35m \u001b[0m\u001b[1;36mproduction\u001b[1;35m matches one of the possible \u001b[0m\u001b[1;36mModelStages\u001b[1;35m and will be fetched using stage.\u001b[0m\n"
]
}
],
"source": [
"pipeline_args = {}\n",
"pipeline_args[\"config_path\"] = os.path.join(\"configs\", \"inference.yaml\")\n",
"fe_b_configured = batch_inference.with_options(**pipeline_args)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "9901c6d0",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[33mUsing an external artifact as step input currently invalidates caching for the step and all downstream steps. Future releases will introduce hashing of artifacts which will improve this behavior.\u001b[0m\n",
"\u001b[1;35mInitiating a new run for the pipeline: \u001b[0m\u001b[1;36mbatch_inference\u001b[1;35m.\u001b[0m\n",
"\u001b[1;35mReusing registered version: \u001b[0m\u001b[1;36m(version: 1)\u001b[1;35m.\u001b[0m\n",
"\u001b[1;35mExecuting a new run.\u001b[0m\n",
"\u001b[1;35mUsing user: \u001b[0m\u001b[1;36malexej@zenml.io\u001b[1;35m\u001b[0m\n",
"\u001b[1;35mUsing stack: \u001b[0m\u001b[1;36mdefault\u001b[1;35m\u001b[0m\n",
"\u001b[1;35m artifact_store: \u001b[0m\u001b[1;36mdefault\u001b[1;35m\u001b[0m\n",
"\u001b[1;35m orchestrator: \u001b[0m\u001b[1;36mdefault\u001b[1;35m\u001b[0m\n",
"\u001b[1;35mUsing cached version of \u001b[0m\u001b[1;36mdata_loader\u001b[1;35m.\u001b[0m\n",
"\u001b[1;35mStep \u001b[0m\u001b[1;36mdata_loader\u001b[1;35m has started.\u001b[0m\n",
"\u001b[1;35mStep \u001b[0m\u001b[1;36minference_preprocessor\u001b[1;35m has started.\u001b[0m\n",
"\u001b[1;35mStep \u001b[0m\u001b[1;36minference_preprocessor\u001b[1;35m has finished in \u001b[0m\u001b[1;36m8.661s\u001b[1;35m.\u001b[0m\n",
"\u001b[1;35mStep \u001b[0m\u001b[1;36minference_predict\u001b[1;35m has started.\u001b[0m\n",
"name='breast_cancer_classifier' license='Apache 2.0' description='Classification of Breast Cancer Dataset.' audience=None use_cases=None limitations=None trade_offs=None ethics=None tags=['classification', 'sklearn'] version='production' save_models_to_registry=True suppress_class_validation_warnings=True was_created_in_this_run=False\n",
"\u001b[33mYou specified both an ID as well as a version of the artifacts. Ignoring the version and fetching the artifacts by ID.\u001b[0m\n",
"\u001b[33mYour artifact was materialized under Python version 'unknown' but you are currently using '3.9.13'. This might cause unexpected behavior since pickle is not reproducible across Python versions. Attempting to load anyway...\u001b[0m\n",
"\u001b[33mCould not import Azure service connector: No module named 'azure.identity'.\u001b[0m\n",
"[1 0 0 1 1 0 0 0 0 1 1 0 1 0 1 0 1 1 1 0 0 1 0 1 1 1 1 1]\n",
"\u001b[1;35mStep \u001b[0m\u001b[1;36minference_predict\u001b[1;35m has finished in \u001b[0m\u001b[1;36m18.218s\u001b[1;35m.\u001b[0m\n",
"\u001b[1;35mRun \u001b[0m\u001b[1;36mbatch_inference-2023_12_06-09_11_29_924914\u001b[1;35m has finished in \u001b[0m\u001b[1;36m32.726s\u001b[1;35m.\u001b[0m\n",
"\u001b[1;35mDashboard URL: https://1cf18d95-zenml.cloudinfra.zenml.io/workspaces/default/pipelines/2979acb2-c862-480a-8f50-a2be4c76a8a2/runs/7886e370-b05a-4205-931e-e4994fabd897/dag\u001b[0m\n"
]
}
],
"source": [
"fe_b_configured()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "98d39df8",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"id": "51690802-31a7-4e6d-9f88-e6457c6c4a96",
"metadata": {},
"source": [
"# Huggingface Model to Sagemaker Endpoint: Automating MLOps with ZenML\n",
"Deploying Huggingface models to AWS Sagemaker endpoints typically only requires a few lines of code. However, there's a growing demand to not just deploy, but to seamlessly automate the entire flow from training to production with comprehensive lineage tracking. ZenML adeptly fills this niche, providing an end-to-end MLOps solution for Huggingface users wishing to deploy to Sagemaker. Below, weβll walk through the architecture that ZenML employs to bring a Huggingface model into production with AWS Sagemaker. Of course all of this can be adapted to not just Sagemaker, but any other model deployment service like GCP Vertex or Azure ML Platform.\n",
"\n",
"This blog post showcases one way of using ZenML pipelines to achieve this:\n",
"\n",
"- Create and version a dataset in a feature_engineering_pipeline.\n",
"- Train/Finetune a BERT-based Sentiment Analysis NLP model and push to Huggingface Hub in a training_pipeline.\n",
"- Promote this model to Production by comparing to previous models in a promotion_pipeline.\n",
"- Deploy the model at the Production Stage to a AWS Sagemaker endpoint with a deployment_pipeline.\n",
"\n",
"<img src=\"assets/pipelines_overview.png\" alt=\"Pipelines Overview\">"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "500e3c24-b105-4a69-b2fc-e0ce1f1c1d46",
"metadata": {},
"outputs": [],
"source": [
"# Do the imports at the top\n",
"\n",
"import numpy as np\n",
"from datasets import DatasetDict, load_dataset\n",
"from typing_extensions import Annotated\n",
"from zenml import step\n",
"from zenml.logger import get_logger\n",
"\n",
"import os\n",
"from typing import Optional\n",
"from datetime import datetime as dt\n",
"\n",
"from zenml import pipeline\n",
"from zenml.model import ModelConfig\n",
"\n",
"from steps import (\n",
" data_loader,\n",
" notify_on_failure,\n",
" tokenization_step,\n",
" tokenizer_loader,\n",
" generate_reference_and_comparison_datasets,\n",
")\n",
"from zenml.integrations.evidently.metrics import EvidentlyMetricConfig\n",
"from zenml.integrations.evidently.steps import (\n",
" EvidentlyColumnMapping,\n",
" evidently_report_step,\n",
")\n",
"\n",
"from pipelines import (\n",
" sentinment_analysis_deploy_pipeline,\n",
" sentinment_analysis_promote_pipeline,\n",
" sentinment_analysis_training_pipeline,\n",
")\n",
"\n",
"logger = get_logger(__name__)"
]
},
{
"cell_type": "markdown",
"id": "fc77b660-e206-46b1-a924-407e797a8f47",
"metadata": {},
"source": [
"# π³Breaking it down\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "31edaf46-6981-42be-99b7-9bdd91c160d5",
"metadata": {},
"source": [
"## πΆ Step 1: Start with feature engineering\n",
"\n",
"Automated feature engineering forms the foundation of this MLOps workflow. Thats why the first pipeline is the feature engineering pipeline. This pipeline loads some data from Huggingface and uses a base tokenizer to create a tokenized dataset. The data loader step is a simple Python function that returns a Huggingface dataloader object:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "35de0e4c-b6f8-4b68-927a-f40e4130dc93",
"metadata": {},
"outputs": [],
"source": [
"@step\n",
"def data_loader() -> Annotated[DatasetDict, \"dataset\"]:\n",
" logger.info(f\"Loading dataset airline_reviews... \")\n",
" hf_dataset = load_dataset(\"Shayanvsf/US_Airline_Sentiment\")\n",
" hf_dataset = hf_dataset.rename_column(\"airline_sentiment\", \"label\")\n",
" hf_dataset = hf_dataset.remove_columns(\n",
" [\"airline_sentiment_confidence\", \"negativereason_confidence\"]\n",
" )\n",
" return hf_dataset"
]
},
{
"cell_type": "markdown",
"id": "49e4462c-1e64-48d3-bae7-76696a958646",
"metadata": {},
"source": [
"Notice that you can give each dataset a name with Pythonβs Annotated object. The DatasetDict is a native Huggingface dataset which ZenML knows how to persist through steps. This flow ensures reproducibility and version control for every dataset iteration.\n",
"\n",
"Also notice this is a simple Python function, that can be called with the `entrypoint` wrapper:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "18144a6b-c266-453d-82c8-b5d6aa1be0aa",
"metadata": {},
"outputs": [],
"source": [
"hf_dataset = data_loader.entrypoint()\n",
"print(hf_dataset)"
]
},
{
"cell_type": "markdown",
"id": "31330d3c-044f-4912-8d36-74146f48cecf",
"metadata": {},
"source": [
"Now we put this a full feature engineering pipeline. Each run of the feature engineering pipeline produces a new dataset to use for the training pipeline. ZenML versions this data as it flows through the pipeline.\n",
"\n",
"<img src=\"assets/pipelines_feature_eng.png\" alt=\"Pipelines Feature Engineering\">"
]
},
{
"cell_type": "markdown",
"id": "9511bd84-1e97-42db-9b75-06285cc6904c",
"metadata": {},
"source": [
"### Set your stack"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "76f3a7e7-0d85-43b3-9e9f-4c7f20ea65e6",
"metadata": {},
"outputs": [],
"source": [
"!zenml stack describe hf-sagemaker-local"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "04b0bf69-70c6-4408-b18c-95df9e030c0c",
"metadata": {},
"outputs": [],
"source": [
"!zenml stack set hf-sagemaker-local"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "de5398a4-a9ec-42d6-bbd6-390244c52d13",
"metadata": {},
"outputs": [],
"source": [
"!zenml stack get"
]
},
{
"cell_type": "markdown",
"id": "152f718d-70c2-4a29-a73e-37db85675cb8",
"metadata": {},
"source": [
"### Run the pipeline"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7ca6c41e-e4b3-46d2-8264-9a453ac9aa3c",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"@pipeline(on_failure=notify_on_failure)\n",
"def sentinment_analysis_feature_engineering_pipeline(\n",
" lower_case: Optional[bool] = True,\n",
" padding: Optional[str] = \"max_length\",\n",
" max_seq_length: Optional[int] = 128,\n",
" text_column: Optional[str] = \"text\",\n",
" label_column: Optional[str] = \"label\",\n",
"):\n",
" # Link all the steps together by calling them and passing the output\n",
" # of one step as the input of the next step.\n",
"\n",
" ########## Load Dataset stage ##########\n",
" dataset = data_loader()\n",
"\n",
" ########## Data Quality stage ##########\n",
" reference_dataset, comparison_dataset = generate_reference_and_comparison_datasets(\n",
" dataset\n",
" )\n",
" text_data_report = evidently_report_step.with_options(\n",
" parameters=dict(\n",
" column_mapping=EvidentlyColumnMapping(\n",
" target=\"label\",\n",
" text_features=[\"text\"],\n",
" ),\n",
" metrics=[\n",
" EvidentlyMetricConfig.metric(\"DataQualityPreset\"),\n",
" EvidentlyMetricConfig.metric(\n",
" \"TextOverviewPreset\", column_name=\"text\"\n",
" ),\n",
" ],\n",
" # We need to download the NLTK data for the TextOverviewPreset\n",
" download_nltk_data=True,\n",
" ),\n",
" )\n",
" text_data_report(reference_dataset, comparison_dataset)\n",
"\n",
" ########## Tokenization stage ##########\n",
" tokenizer = tokenizer_loader(lower_case=lower_case)\n",
" tokenized_data = tokenization_step(\n",
" dataset=dataset,\n",
" tokenizer=tokenizer,\n",
" padding=padding,\n",
" max_seq_length=max_seq_length,\n",
" text_column=text_column,\n",
" label_column=label_column,\n",
" )\n",
" return tokenizer, tokenized_data"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3c8a5be7-ebaa-41c4-ac23-4afc6e7e06aa",
"metadata": {},
"outputs": [],
"source": [
"# Run a pipeline with the required parameters. \n",
"no_cache: bool = True\n",
"zenml_model_name: str = \"distil_bert_sentiment_analysis\"\n",
"max_seq_length = 512\n",
"\n",
"# This executes all steps in the pipeline in the correct order using the orchestrator\n",
"# stack component that is configured in your active ZenML stack.\n",
"model_config = ModelConfig(\n",
" name=zenml_model_name,\n",
" license=\"Apache 2.0\",\n",
" description=\"Show case Model Control Plane.\",\n",
" create_new_model_version=True,\n",
" delete_new_version_on_failure=True,\n",
" tags=[\"sentiment_analysis\", \"huggingface\"],\n",
")\n",
"\n",
"pipeline_args = {}\n",
"\n",
"if no_cache:\n",
" pipeline_args[\"enable_cache\"] = False\n",
"\n",
"# Execute Feature Engineering Pipeline\n",
"pipeline_args[\"model_config\"] = model_config\n",
"pipeline_args[\"config_path\"] = os.path.join(\"configs\", \"feature_engineering_config.yaml\")\n",
"run_args_feature = {\n",
" \"max_seq_length\": max_seq_length,\n",
"}\n",
"pipeline_args[\n",
" \"run_name\"\n",
"] = f\"sentinment_analysis_feature_engineering_pipeline_run_{dt.now().strftime('%Y_%m_%d_%H_%M_%S')}\"\n",
"p = sentinment_analysis_feature_engineering_pipeline.with_options(**pipeline_args)\n",
"p(**run_args_feature)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0e7c1ea2-64fe-478a-9963-17c7b7f62110",
"metadata": {},
"outputs": [],
"source": [
"from zenml.client import Client\n",
"from IPython.display import display, HTML\n",
"\n",
"client = Client()\n",
"# CHANGE THIS TO THE LATEST RUN ID\n",
"latest_run = client.get_pipeline_run(\"sentinment_analysis_feature_engineering_pipeline_run_2023_11_21_10_55_56\")\n",
"html = latest_run.steps[\"evidently_report_step\"].outputs['report_html'].load()\n",
"display(HTML(html))"
]
},
{
"cell_type": "markdown",
"id": "78ab8771-4421-4975-a3d5-12892a56b805",
"metadata": {},
"source": [
"## πͺ Step 2: Train the model with Huggingface Hub as the model registry\n",
" "
]
},
{
"cell_type": "markdown",
"id": "2843efa8-32b6-4b13-ac85-33c99cc94e3e",
"metadata": {},
"source": [
"Once the feature engineering pipeline has run a few times, we have many datasets to choose from. We can feed our desired one into a function that trains the model on the data. Thanks to the ZenML Huggingface integration, this data is loaded directly from the ZenML artifact store.\n",
"\n",
"<img src=\"assets/training_pipeline_overview.png\" alt=\"Pipelines Trains\">\n",
"\n",
"On the left side, we see our local MLOps stack, which defines our infrastructure and tooling we are using for this particular pipeline. ZenML makes it easy to run on a local stack on your development machine, or switch out the stack to run on a AWS Kubeflow-based stack (if you want to scale up).\n",
"\n",
"On the right side is the new kid on the block - the ZenML Model Control Plane. The Model Control Plane is a new feature in ZenML that allows users to have a complete overview of their machine learning models. It allows teams to consolidate all artifacts related to their ML models into one place, and manage its lifecycle easily as you can see from this view from the ZenML Cloud:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4c99b20f-8e3b-4119-86e9-33dd1395470a",
"metadata": {},
"outputs": [],
"source": [
"pipeline_args[\"config_path\"] = os.path.join(\"configs\", \"trainer_config.yaml\")\n",
"\n",
"pipeline_args[\"enable_cache\"] = True\n",
"\n",
"run_args_train = {\n",
" \"num_epochs\": 1,\n",
" \"train_batch_size\": 64,\n",
" \"eval_batch_size\": 64,\n",
" \"learning_rate\": 2e-4,\n",
" \"weight_decay\": 0.01,\n",
" \"max_seq_length\": 512,\n",
"}\n",
"\n",
"# Use versioned artifacts from the last step\n",
"# run_args_train[\"dataset_artifact_id\"] = latest_run.steps['tokenization_step'].output.id\n",
"# run_args_train[\"tokenizer_artifact_id\"] = latest_run.steps['tokenizer_loader'].output.id\n",
"\n",
"# Configure the model\n",
"pipeline_args[\"model_config\"] = model_config\n",
"\n",
"pipeline_args[\n",
" \"run_name\"\n",
"] = f\"sentinment_analysis_training_run_{dt.now().strftime('%Y_%m_%d_%H_%M_%S')}\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "96592299-0090-4d2a-962e-6ca232c1fb75",
"metadata": {},
"outputs": [],
"source": [
"sentinment_analysis_training_pipeline.with_options(**pipeline_args)(\n",
" **run_args_train\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e24e29de-6d1b-41da-9ab2-ca2b32f1f540",
"metadata": {},
"outputs": [],
"source": [
"### Check out a new stack\n",
"!zenml stack describe hf-sagemaker-airflow"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7c9a5bee-8465-4d41-888a-093f1f6a2ef1",
"metadata": {},
"outputs": [],
"source": [
"### Change the stack\n",
"!zenml stack set hf-sagemaker-airflow"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d3772c50-1c90-4ffc-8394-c9cfca16cc53",
"metadata": {},
"outputs": [],
"source": [
"sentinment_analysis_training_pipeline.with_options(**pipeline_args)(\n",
" **run_args_train\n",
")"
]
},
{
"cell_type": "markdown",
"id": "be79f454-a45d-4f5f-aa93-330d52069124",
"metadata": {},
"source": [
"## π«
Step 3: Promote the model to production\n"
]
},
{
"cell_type": "markdown",
"id": "5a09b432-7a66-473e-bdb6-ffdca730498b",
"metadata": {},
"source": [
"Following training, the automated promotion pipeline evaluates models against predefined metrics, identifying and marking the most performant one as 'Production ready'. This is another common use case for the Model Control Plane; we store the relevant metrics there to access them easily later.\n",
"\n",
"<img src=\"assets/promoting_pipeline_overview.png\" alt=\"Pipelines Trains\">"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5bac7ae5-70d0-449c-929c-e175c3062f2d",
"metadata": {},
"outputs": [],
"source": [
"!zenml stack set hf-sagemaker-local"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "170c9ef6-4e6f-4e50-ac37-e05bef8570ea",
"metadata": {},
"outputs": [],
"source": [
"run_args_promoting = {}\n",
"model_config = ModelConfig(name=zenml_model_name)\n",
"pipeline_args[\"config_path\"] = os.path.join(\"configs\", \"promoting_config.yaml\")\n",
"\n",
"pipeline_args[\"model_config\"] = model_config\n",
"\n",
"pipeline_args[\n",
" \"run_name\"\n",
"] = f\"sentinment_analysis_promoting_pipeline_run_{dt.now().strftime('%Y_%m_%d_%H_%M_%S')}\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e6df11e2-4591-4186-a8f8-243f9c4d1e3d",
"metadata": {},
"outputs": [],
"source": [
"sentinment_analysis_promote_pipeline.with_options(**pipeline_args)(\n",
" **run_args_promoting\n",
")"
]
},
{
"cell_type": "markdown",
"id": "6efc4968-35fd-42e3-ba62-d8e1557aa0d6",
"metadata": {},
"source": [
"## π― Step 4: Deploy the model to AWS Sagemaker Endpoints\n"
]
},
{
"cell_type": "markdown",
"id": "577aff86-bde9-48d4-9b52-209cfed9fd4e",
"metadata": {},
"source": [
"This is the final step to automate the deployment of the slated production model to a Sagemaker endpoint. The deployment pipelines handles the complexities of AWS interactions and ensures that the model, along with its full history and context, is transitioned into a live environment ready for use. Here again we use the Model Control Plane interface to query the Huggingface revision and use that information to push to Huggingface Hub.\n",
"\n",
"<img src=\"assets/deploying_pipeline_overview.png\" alt=\"Pipelines Trains\">\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1513ab5f-de05-4344-9d2c-fedbfbd21ef0",
"metadata": {},
"outputs": [],
"source": [
"!zenml stack set hf-sagemaker-local"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "606fdb3c-4eca-4d32-bccb-280743d15528",
"metadata": {},
"outputs": [],
"source": [
"pipeline_args[\"config_path\"] = os.path.join(\"configs\", \"deploying_config.yaml\")\n",
"\n",
"# Deploying pipeline has new ZenML model config\n",
"model_config = ModelConfig(\n",
" name=zenml_model_name,\n",
" version=ModelStages.PRODUCTION,\n",
")\n",
"pipeline_args[\"model_config\"] = model_config\n",
"pipeline_args[\"enable_cache\"] = False\n",
"run_args_deploying = {}\n",
"pipeline_args[\n",
" \"run_name\"\n",
"] = f\"sentinment_analysis_deploy_pipeline_run_{dt.now().strftime('%Y_%m_%d_%H_%M_%S')}\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "87f1f982-ab96-4207-8e7e-e318473587e9",
"metadata": {},
"outputs": [],
"source": [
"sentinment_analysis_deploy_pipeline.with_options(**pipeline_args)(\n",
" **run_args_deploying\n",
")"
]
},
{
"cell_type": "markdown",
"id": "594ee4fc-f102-4b99-bdc3-2f1670c87679",
"metadata": {},
"source": [
"ZenML builds upon the straightforward deployment capability of Huggingface models to AWS Sagemaker, and transforms it into a sophisticated, repeatable, and transparent MLOps workflow. It takes charge of the intricate steps necessary for modern ML systems, ensuring that software engineering leads can focus on iteration and innovation rather than operational intricacies.\n",
"\n",
"To delve deeper into each stage, refer to the comprehensive guide on GitHub[: zenml-io/zenml-huggingface-sagemak](https://github.com/zenml-io/zenml-huggingface-sagemaker)er. Additionally[, this YouTube playli](https://www.youtube.com/watch?v=Q1EH2H8Akgo&list=PLhNrLW_IWplw6dBbmGcL828-atJMu3CwF)st provides a detailed visual walkthrough of the entire pipeline: Huggingface to Sagemaker ZenML tutorial.\n",
"\n",
"Interested in standardizing your MLOps workflows? ZenML Cloud is now available to all - get a managed ZenML server with important features such as RBAC and pipeline trigge[rs. Book a ](https://zenml.io/book-a-demo)demo with us now to learn how you can create your own MLOps pipelines today."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|