File size: 17,622 Bytes
551af5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f1aa39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
551af5c
 
 
 
 
 
 
ec48b04
551af5c
ec48b04
551af5c
 
 
 
7f1aa39
551af5c
7f1aa39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
551af5c
ec48b04
551af5c
 
 
 
 
 
 
ec48b04
551af5c
 
 
 
 
 
 
 
 
 
 
ec48b04
551af5c
 
 
 
7f1aa39
ec48b04
551af5c
7f1aa39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
551af5c
ec48b04
551af5c
 
 
 
ec48b04
551af5c
 
ec48b04
551af5c
 
 
 
ec48b04
551af5c
 
ec48b04
551af5c
 
 
 
 
ec48b04
551af5c
 
 
ec48b04
551af5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "63ab391a",
   "metadata": {},
   "source": [
    "# Intro to MLOps using ZenML\n",
    "\n",
    "## 🌍 Overview\n",
    "\n",
    "This repository is a minimalistic MLOps project intended as a starting point to learn how to put ML workflows in production. It features: \n",
    "\n",
    "Follow along this notebook to understand how you can use ZenML to productionalize your ML workflows!\n",
    "\n",
    "<img src=\"_assets/pipeline_overview.png\" width=\"50%\" alt=\"Pipelines Overview\">"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8c28b474",
   "metadata": {},
   "source": [
    "# ⌚ Step 1: (Feature engineering) + Training pipeline"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8e5a76e6-8655-47d5-ab61-015b2d69d720",
   "metadata": {},
   "source": [
    "Lets run the feature engineering pipeline\n",
    "\n",
    "<img src=\"_assets/feature_engineering_pipeline.png\" width=\"50%\" alt=\"Training pipeline\">"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "942a20f9-244b-4761-933e-55989a7377d6",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\u001b[1;35mInitiating a new run for the pipeline: \u001b[0m\u001b[1;36mfeature_engineering\u001b[1;35m.\u001b[0m\n",
      "\u001b[1;35mReusing registered version: \u001b[0m\u001b[1;36m(version: 28)\u001b[1;35m.\u001b[0m\n",
      "\u001b[1;35mNew model version \u001b[0m\u001b[1;36m7\u001b[1;35m was created.\u001b[0m\n",
      "\u001b[1;35mExecuting a new run.\u001b[0m\n",
      "\u001b[1;35mUsing user: \u001b[0m\u001b[1;36mhamza@zenml.io\u001b[1;35m\u001b[0m\n",
      "\u001b[1;35mUsing stack: \u001b[0m\u001b[1;36mlocal-sagemaker-step-operator-stack\u001b[1;35m\u001b[0m\n",
      "\u001b[1;35m  model_registry: \u001b[0m\u001b[1;36mmlflow\u001b[1;35m\u001b[0m\n",
      "\u001b[1;35m  step_operator: \u001b[0m\u001b[1;36msagemaker-eu\u001b[1;35m\u001b[0m\n",
      "\u001b[1;35m  experiment_tracker: \u001b[0m\u001b[1;36mmlflow\u001b[1;35m\u001b[0m\n",
      "\u001b[1;35m  container_registry: \u001b[0m\u001b[1;36maws-eu\u001b[1;35m\u001b[0m\n",
      "\u001b[1;35m  orchestrator: \u001b[0m\u001b[1;36mdefault\u001b[1;35m\u001b[0m\n",
      "\u001b[1;35m  image_builder: \u001b[0m\u001b[1;36mlocal\u001b[1;35m\u001b[0m\n",
      "\u001b[1;35m  artifact_store: \u001b[0m\u001b[1;36ms3-zenfiles\u001b[1;35m\u001b[0m\n",
      "\u001b[33mCould not import GCP service connector: No module named 'google.api_core'.\u001b[0m\n",
      "\u001b[33mCould not import Azure service connector: No module named 'azure.identity'.\u001b[0m\n",
      "\u001b[1;35mStep \u001b[0m\u001b[1;36mdata_loader\u001b[1;35m has started.\u001b[0m\n",
      "\u001b[1;35mDataset with 541 records loaded!\u001b[0m\n",
      "\u001b[1;35mStep \u001b[0m\u001b[1;36mdata_loader\u001b[1;35m has finished in \u001b[0m\u001b[1;36m7.510s\u001b[1;35m.\u001b[0m\n",
      "\u001b[1;35mStep \u001b[0m\u001b[1;36mdata_splitter\u001b[1;35m has started.\u001b[0m\n",
      "\u001b[1;35mStep \u001b[0m\u001b[1;36mdata_splitter\u001b[1;35m has finished in \u001b[0m\u001b[1;36m11.852s\u001b[1;35m.\u001b[0m\n",
      "\u001b[1;35mStep \u001b[0m\u001b[1;36mdata_preprocessor\u001b[1;35m has started.\u001b[0m\n",
      "\u001b[1;35mStep \u001b[0m\u001b[1;36mdata_preprocessor\u001b[1;35m has finished in \u001b[0m\u001b[1;36m16.644s\u001b[1;35m.\u001b[0m\n",
      "\u001b[1;35mRun \u001b[0m\u001b[1;36mfeature_engineering-2024_01_04-14_23_46_664507\u001b[1;35m has finished in \u001b[0m\u001b[1;36m55.055s\u001b[1;35m.\u001b[0m\n",
      "\u001b[1;35mDashboard URL: https://1cf18d95-zenml.cloudinfra.zenml.io/workspaces/default/pipelines/c8c78176-d287-4fa1-ab35-a90f35670aa4/runs/29cb4996-65a5-449a-a53a-f140e971d97c/dag\u001b[0m\n",
      "\u001b[1;35mFeature Engineering pipeline finished successfully!\u001b[0m\n",
      "\u001b[1;35mThe latest feature engineering pipeline produced the following artifacts: \n",
      "\n",
      "1. Train Dataset - Name: dataset_trn, Version Name: 191 \n",
      "2. Test Dataset: Name: dataset_tst, Version Name: 189\u001b[0m\n"
     ]
    }
   ],
   "source": [
    "!python run.py --feature-pipeline"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "87909827",
   "metadata": {},
   "source": [
    "Lets run the training pipeline\n",
    "\n",
    "<img src=\"_assets/training_pipeline.png\" width=\"50%\" alt=\"Training pipeline\">"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "fccf1bd9",
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\u001b[1;35mInitiating a new run for the pipeline: \u001b[0m\u001b[1;36mbreast_cancer_training\u001b[1;35m.\u001b[0m\n",
      "\u001b[1;35mReusing registered version: \u001b[0m\u001b[1;36m(version: 6)\u001b[1;35m.\u001b[0m\n",
      "\u001b[1;35mNew model version \u001b[0m\u001b[1;36m8\u001b[1;35m was created.\u001b[0m\n",
      "\u001b[1;35mExecuting a new run.\u001b[0m\n",
      "\u001b[1;35mUsing user: \u001b[0m\u001b[1;36mhamza@zenml.io\u001b[1;35m\u001b[0m\n",
      "\u001b[1;35mUsing stack: \u001b[0m\u001b[1;36mlocal-sagemaker-step-operator-stack\u001b[1;35m\u001b[0m\n",
      "\u001b[1;35m  model_registry: \u001b[0m\u001b[1;36mmlflow\u001b[1;35m\u001b[0m\n",
      "\u001b[1;35m  step_operator: \u001b[0m\u001b[1;36msagemaker-eu\u001b[1;35m\u001b[0m\n",
      "\u001b[1;35m  experiment_tracker: \u001b[0m\u001b[1;36mmlflow\u001b[1;35m\u001b[0m\n",
      "\u001b[1;35m  container_registry: \u001b[0m\u001b[1;36maws-eu\u001b[1;35m\u001b[0m\n",
      "\u001b[1;35m  orchestrator: \u001b[0m\u001b[1;36mdefault\u001b[1;35m\u001b[0m\n",
      "\u001b[1;35m  image_builder: \u001b[0m\u001b[1;36mlocal\u001b[1;35m\u001b[0m\n",
      "\u001b[1;35m  artifact_store: \u001b[0m\u001b[1;36ms3-zenfiles\u001b[1;35m\u001b[0m\n",
      "\u001b[33mCould not import GCP service connector: No module named 'google.api_core'.\u001b[0m\n",
      "\u001b[33mCould not import Azure service connector: No module named 'azure.identity'.\u001b[0m\n",
      "\u001b[1;35mStep \u001b[0m\u001b[1;36mdata_loader\u001b[1;35m has started.\u001b[0m\n",
      "\u001b[1;35mDataset with 541 records loaded!\u001b[0m\n",
      "\u001b[1;35mStep \u001b[0m\u001b[1;36mdata_loader\u001b[1;35m has finished in \u001b[0m\u001b[1;36m7.566s\u001b[1;35m.\u001b[0m\n",
      "\u001b[1;35mStep \u001b[0m\u001b[1;36mdata_splitter\u001b[1;35m has started.\u001b[0m\n",
      "\u001b[1;35mStep \u001b[0m\u001b[1;36mdata_splitter\u001b[1;35m has finished in \u001b[0m\u001b[1;36m12.308s\u001b[1;35m.\u001b[0m\n",
      "\u001b[1;35mStep \u001b[0m\u001b[1;36mdata_preprocessor\u001b[1;35m has started.\u001b[0m\n",
      "\u001b[1;35mStep \u001b[0m\u001b[1;36mdata_preprocessor\u001b[1;35m has finished in \u001b[0m\u001b[1;36m18.092s\u001b[1;35m.\u001b[0m\n",
      "\u001b[1;35mCaching \u001b[0m\u001b[1;36mdisabled\u001b[1;35m explicitly for \u001b[0m\u001b[1;36mmodel_trainer\u001b[1;35m.\u001b[0m\n",
      "\u001b[1;35mStep \u001b[0m\u001b[1;36mmodel_trainer\u001b[1;35m has started.\u001b[0m\n",
      "\u001b[1;35mTraining model DecisionTreeClassifier()...\u001b[0m\n",
      "/home/htahir1/.virtualenvs/demo_stack_showcase/lib/python3.8/site-packages/_distutils_hack/__init__.py:33: UserWarning: Setuptools is replacing distutils.\n",
      "  warnings.warn(\"Setuptools is replacing distutils.\")\n",
      "/home/htahir1/.virtualenvs/demo_stack_showcase/lib/python3.8/site-packages/zenml/integrations/mlflow/experiment_trackers/mlflow_experiment_tracker.py:245: FutureWarning: ``mlflow.gluon.autolog`` is deprecated since 2.5.0. This method will be removed in a future release.\n",
      "  module.autolog(disable=True)\n",
      "\u001b[33mFailed to disable MLflow autologging for the following frameworks: ['tensorflow'].\u001b[0m\n",
      "\u001b[1;35mStep \u001b[0m\u001b[1;36mmodel_trainer\u001b[1;35m has finished in \u001b[0m\u001b[1;36m15.244s\u001b[1;35m.\u001b[0m\n",
      "\u001b[1;35mCaching \u001b[0m\u001b[1;36mdisabled\u001b[1;35m explicitly for \u001b[0m\u001b[1;36mmodel_evaluator\u001b[1;35m.\u001b[0m\n",
      "\u001b[1;35mStep \u001b[0m\u001b[1;36mmodel_evaluator\u001b[1;35m has started.\u001b[0m\n",
      "\u001b[33mYour artifact was materialized under Python version 'unknown' but you are currently using '3.8.10'. This might cause unexpected behavior since pickle is not reproducible across Python versions. Attempting to load anyway...\u001b[0m\n",
      "\u001b[1;35mTrain accuracy=100.00%\u001b[0m\n",
      "\u001b[1;35mTest accuracy=92.66%\u001b[0m\n",
      "/home/htahir1/.virtualenvs/demo_stack_showcase/lib/python3.8/site-packages/zenml/integrations/mlflow/experiment_trackers/mlflow_experiment_tracker.py:245: FutureWarning: ``mlflow.gluon.autolog`` is deprecated since 2.5.0. This method will be removed in a future release.\n",
      "  module.autolog(disable=True)\n",
      "\u001b[33mFailed to disable MLflow autologging for the following frameworks: ['tensorflow'].\u001b[0m\n",
      "\u001b[1;35mImplicitly linking artifact \u001b[0m\u001b[1;36moutput\u001b[1;35m to model \u001b[0m\u001b[1;36mbreast_cancer_classifier\u001b[1;35m version \u001b[0m\u001b[1;36m8\u001b[1;35m.\u001b[0m\n",
      "\u001b[1;35mStep \u001b[0m\u001b[1;36mmodel_evaluator\u001b[1;35m has finished in \u001b[0m\u001b[1;36m15.865s\u001b[1;35m.\u001b[0m\n",
      "\u001b[1;35mStep \u001b[0m\u001b[1;36mmodel_promoter\u001b[1;35m has started.\u001b[0m\n",
      "\u001b[1;35mModel promoted to production!\u001b[0m\n",
      "\u001b[1;35mImplicitly linking artifact \u001b[0m\u001b[1;36moutput\u001b[1;35m to model \u001b[0m\u001b[1;36mbreast_cancer_classifier\u001b[1;35m version \u001b[0m\u001b[1;36m8\u001b[1;35m.\u001b[0m\n",
      "\u001b[1;35mStep \u001b[0m\u001b[1;36mmodel_promoter\u001b[1;35m has finished in \u001b[0m\u001b[1;36m8.292s\u001b[1;35m.\u001b[0m\n",
      "\u001b[1;35mRun \u001b[0m\u001b[1;36mbreast_cancer_training-2024_01_04-14_30_21_437288\u001b[1;35m has finished in \u001b[0m\u001b[1;36m1m51s\u001b[1;35m.\u001b[0m\n",
      "\u001b[1;35mDashboard URL: https://1cf18d95-zenml.cloudinfra.zenml.io/workspaces/default/pipelines/bb529fac-e51f-44c0-a2c5-c1a8930f6d44/runs/23510d3a-dbb8-4ebd-904a-6a4ddf8105c5/dag\u001b[0m\n",
      "\u001b[1;35mTraining pipeline finished successfully!\u001b[0m\n"
     ]
    }
   ],
   "source": [
    "!python run.py --training-pipeline"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d6306f14",
   "metadata": {},
   "source": [
    "# πŸ«… Step 2: The inference pipeline"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b51f3108",
   "metadata": {},
   "source": [
    "The batch inference pipeline simply takes the model marked as `production` and runs inference on it\n",
    "with `live data`. The critical step here is the `inference_predict` step, where we load the model in memory\n",
    "and generate predictions:\n",
    "\n",
    "<img src=\"_assets/inference_pipeline.png\" width=\"45%\" alt=\"Inference pipeline\">"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "9918a8a1-c569-494f-aa40-cb7bd3aaea07",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\u001b[1;35m\u001b[0m\u001b[1;36mversion\u001b[1;35m \u001b[0m\u001b[1;36mproduction\u001b[1;35m matches one of the possible \u001b[0m\u001b[1;36mModelStages\u001b[1;35m and will be fetched using stage.\u001b[0m\n",
      "\u001b[33mUsing an external artifact as step input currently invalidates caching for the step and all downstream steps. Future releases will introduce hashing of artifacts which will improve this behavior.\u001b[0m\n",
      "\u001b[1;35mInitiating a new run for the pipeline: \u001b[0m\u001b[1;36minference\u001b[1;35m.\u001b[0m\n",
      "\u001b[1;35mReusing registered version: \u001b[0m\u001b[1;36m(version: 9)\u001b[1;35m.\u001b[0m\n",
      "\u001b[1;35mExecuting a new run.\u001b[0m\n",
      "\u001b[1;35mUsing user: \u001b[0m\u001b[1;36mhamza@zenml.io\u001b[1;35m\u001b[0m\n",
      "\u001b[1;35mUsing stack: \u001b[0m\u001b[1;36mlocal-sagemaker-step-operator-stack\u001b[1;35m\u001b[0m\n",
      "\u001b[1;35m  model_registry: \u001b[0m\u001b[1;36mmlflow\u001b[1;35m\u001b[0m\n",
      "\u001b[1;35m  step_operator: \u001b[0m\u001b[1;36msagemaker-eu\u001b[1;35m\u001b[0m\n",
      "\u001b[1;35m  experiment_tracker: \u001b[0m\u001b[1;36mmlflow\u001b[1;35m\u001b[0m\n",
      "\u001b[1;35m  container_registry: \u001b[0m\u001b[1;36maws-eu\u001b[1;35m\u001b[0m\n",
      "\u001b[1;35m  orchestrator: \u001b[0m\u001b[1;36mdefault\u001b[1;35m\u001b[0m\n",
      "\u001b[1;35m  image_builder: \u001b[0m\u001b[1;36mlocal\u001b[1;35m\u001b[0m\n",
      "\u001b[1;35m  artifact_store: \u001b[0m\u001b[1;36ms3-zenfiles\u001b[1;35m\u001b[0m\n",
      "\u001b[33mCould not import GCP service connector: No module named 'google.api_core'.\u001b[0m\n",
      "\u001b[33mCould not import Azure service connector: No module named 'azure.identity'.\u001b[0m\n",
      "\u001b[1;35mUsing cached version of \u001b[0m\u001b[1;36mdata_loader\u001b[1;35m.\u001b[0m\n",
      "\u001b[1;35mStep \u001b[0m\u001b[1;36mdata_loader\u001b[1;35m has started.\u001b[0m\n",
      "\u001b[1;35mStep \u001b[0m\u001b[1;36minference_preprocessor\u001b[1;35m has started.\u001b[0m\n",
      "\u001b[33mYour artifact was materialized under Python version 'unknown' but you are currently using '3.8.10'. This might cause unexpected behavior since pickle is not reproducible across Python versions. Attempting to load anyway...\u001b[0m\n",
      "\u001b[1;35mStep \u001b[0m\u001b[1;36minference_preprocessor\u001b[1;35m has finished in \u001b[0m\u001b[1;36m8.990s\u001b[1;35m.\u001b[0m\n",
      "\u001b[1;35mStep \u001b[0m\u001b[1;36minference_predict\u001b[1;35m has started.\u001b[0m\n",
      "\u001b[33mYou specified both an ID as well as a version of the artifact_versions. Ignoring the version and fetching the artifact_versions by ID.\u001b[0m\n",
      "\u001b[33mYour artifact was materialized under Python version 'unknown' but you are currently using '3.8.10'. This might cause unexpected behavior since pickle is not reproducible across Python versions. Attempting to load anyway...\u001b[0m\n",
      "\u001b[1;35mStep \u001b[0m\u001b[1;36minference_predict\u001b[1;35m has finished in \u001b[0m\u001b[1;36m16.236s\u001b[1;35m.\u001b[0m\n",
      "\u001b[1;35mRun \u001b[0m\u001b[1;36minference-2024_01_04-14_44_48_944106\u001b[1;35m has finished in \u001b[0m\u001b[1;36m42.637s\u001b[1;35m.\u001b[0m\n",
      "\u001b[1;35mDashboard URL: https://1cf18d95-zenml.cloudinfra.zenml.io/workspaces/default/pipelines/4ac825a0-d89c-4109-91ef-f077327cfe4f/runs/3fab91f4-7c52-497b-9aa4-a491d1f0a60b/dag\u001b[0m\n",
      "\u001b[1;35mInference pipeline finished successfully!\u001b[0m\n"
     ]
    }
   ],
   "source": [
    "!python run.py --inference-pipeline"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "36140d24-a280-48eb-bb03-5e03280e128c",
   "metadata": {},
   "source": [
    "## Step 3: Deploying the pipeline to Huggingface"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "13bd8087-2ab0-4f9d-8bff-6266a05eb6e7",
   "metadata": {},
   "source": [
    "<img src=\"_assets/deployment_pipeline.png\" width=\"45%\" alt=\"Deployment pipeline\">"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8000849c-1ce8-4900-846e-3ef1873561f8",
   "metadata": {},
   "outputs": [],
   "source": [
    "!python run.py --deployment-pipeline"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "594ee4fc-f102-4b99-bdc3-2f1670c87679",
   "metadata": {},
   "source": [
    "## Congratulations!\n",
    "\n",
    "You're a legit MLOps engineer now! You trained two models, evaluated them against\n",
    "a test set, registered the best one with the ZenML model control plane,\n",
    "and served some predictions. You also learned how to iterate on your models and\n",
    "data by using some of the ZenML utility abstractions. You saw how to view your\n",
    "artifacts and models via the client as well as the ZenML Dashboard.\n",
    "\n",
    "## Further exploration\n",
    "\n",
    "This was just the tip of the iceberg of what ZenML can do; check out the [**docs**](https://docs.zenml.io/) to learn more\n",
    "about the capabilities of ZenML. For example, you might want to:\n",
    "\n",
    "- [Deploy ZenML](https://docs.zenml.io/user-guide/production-guide/connect-deployed-zenml) to collaborate with your colleagues.\n",
    "- Run the same pipeline on a [cloud MLOps stack in production](https://docs.zenml.io/user-guide/production-guide/cloud-stack).\n",
    "- Track your metrics in an experiment tracker like [MLflow](https://docs.zenml.io/stacks-and-components/component-guide/experiment-trackers/mlflow).\n",
    "\n",
    "## What next?\n",
    "\n",
    "* If you have questions or feedback... join our [**Slack Community**](https://zenml.io/slack) and become part of the ZenML family!\n",
    "* If you want to quickly get started with ZenML, check out the [ZenML Cloud](https://zenml.io/cloud)."
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}