Spaces:
Runtime error
Runtime error
File size: 1,970 Bytes
c73381c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
# {% include 'template/license_header' %}
import pandas as pd
from sklearn.datasets import load_breast_cancer
from typing_extensions import Annotated
from zenml import log_artifact_metadata, step
from zenml.logger import get_logger
logger = get_logger(__name__)
@step
def data_loader(
random_state: int, is_inference: bool = False, target: str = "target"
) -> Annotated[pd.DataFrame, "dataset"]:
"""Dataset reader step.
This is an example of a dataset reader step that load Breast Cancer dataset.
This step is parameterized, which allows you to configure the step
independently of the step code, before running it in a pipeline.
In this example, the step can be configured with number of rows and logic
to drop target column or not. See the documentation for more information:
https://docs.zenml.io/user-guide/advanced-guide/configure-steps-pipelines
Args:
is_inference: If `True` subset will be returned and target column
will be removed from dataset.
random_state: Random state for sampling
target: Name of target columns in dataset.
Returns:
The dataset artifact as Pandas DataFrame and name of target column.
"""
### ADD YOUR OWN CODE HERE - THIS IS JUST AN EXAMPLE ###
dataset = load_breast_cancer(as_frame=True)
inference_size = int(len(dataset.target) * 0.05)
dataset: pd.DataFrame = dataset.frame
inference_subset = dataset.sample(inference_size, random_state=random_state)
if is_inference:
dataset = inference_subset
dataset.drop(columns=target, inplace=True)
else:
dataset.drop(inference_subset.index, inplace=True)
dataset.reset_index(drop=True, inplace=True)
logger.info(f"Dataset with {len(dataset)} records loaded!")
# Recording metadata for this dataset
log_artifact_metadata(metadata={"random_state": random_state, target: target})
### YOUR CODE ENDS HERE ###
return dataset
|