lewtun's picture
lewtun HF staff
Create app.py
4e40a80
raw
history blame
936 Bytes
import gradio as gr
from transformers import pipeline
pipe = pipeline("text-classification", model="lewtun/xlm-roberta-base-finetuned-marc")
label2emoji = {"terrible": "πŸ’©", "poor": "😾", "ok": "🐱", "good": "😺", "great": "😻"}
def predict(text):
preds = pipe(text)[0]
return label2emoji[preds["label"]], round(preds["score"], 5)
gradio_ui = gr.Interface(
fn=predict,
title="Predicting review scores from customer reviews",
description="Enter some review text about an Amazon product and check what the model predicts for it's star rating.",
inputs=[
gr.inputs.Textbox(lines=5, label="Paste some text here"),
],
outputs=[
gr.outputs.Textbox(label="Label"),
gr.outputs.Textbox(label="Score"),
],
examples=[
["I love these running shoes"], ["J'adore ces chaussures de course"], ["Ich liebe diese Laufschuhe"]
],
)
gradio_ui.launch(debug=True)