Spaces:
Configuration error
Configuration error
Tweaks
Browse files- .gitignore +4 -1
- README.md +12 -1
- app.py +45 -19
.gitignore
CHANGED
@@ -157,4 +157,7 @@ cython_debug/
|
|
157 |
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
158 |
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
159 |
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
160 |
-
#.idea/
|
|
|
|
|
|
|
|
157 |
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
158 |
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
159 |
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
160 |
+
#.idea/
|
161 |
+
|
162 |
+
# Local development
|
163 |
+
data/
|
README.md
CHANGED
@@ -14,6 +14,7 @@ A basic example of an RLHF interface with a Gradio app.
|
|
14 |
**Instructions for someone to use for their own project:**
|
15 |
|
16 |
*Setting up the Space*
|
|
|
17 |
1. Clone this repo and deploy it on your own Hugging Face space.
|
18 |
2. Add the following secrets to your space:
|
19 |
- `HF_TOKEN`: One of your Hugging Face tokens.
|
@@ -24,11 +25,21 @@ A basic example of an RLHF interface with a Gradio app.
|
|
24 |
huggingface.co, the app will use your token to automatically store new HITs
|
25 |
in your dataset. Setting `FORCE_PUSH` to "yes" ensures that your repo will
|
26 |
force push changes to the dataset during data collection. Otherwise,
|
27 |
-
accidental manual changes to your dataset could result in your space
|
28 |
merge conflicts as it automatically tries to push the dataset to the hub. For
|
29 |
local development, add these three keys to a `.env` file, and consider setting
|
30 |
`FORCE_PUSH` to "no".
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
*Running Data Collection*
|
|
|
32 |
1. On your local repo that you pulled, create a copy of `config.py.example`,
|
33 |
just called `config.py`. Now, put keys from your AWS account in `config.py`.
|
34 |
These keys should be for an AWS account that has the
|
|
|
14 |
**Instructions for someone to use for their own project:**
|
15 |
|
16 |
*Setting up the Space*
|
17 |
+
|
18 |
1. Clone this repo and deploy it on your own Hugging Face space.
|
19 |
2. Add the following secrets to your space:
|
20 |
- `HF_TOKEN`: One of your Hugging Face tokens.
|
|
|
25 |
huggingface.co, the app will use your token to automatically store new HITs
|
26 |
in your dataset. Setting `FORCE_PUSH` to "yes" ensures that your repo will
|
27 |
force push changes to the dataset during data collection. Otherwise,
|
28 |
+
accidental manual changes to your dataset could result in your space getting
|
29 |
merge conflicts as it automatically tries to push the dataset to the hub. For
|
30 |
local development, add these three keys to a `.env` file, and consider setting
|
31 |
`FORCE_PUSH` to "no".
|
32 |
+
|
33 |
+
To launch the Space locally, run:
|
34 |
+
|
35 |
+
```bash
|
36 |
+
python app.py
|
37 |
+
```
|
38 |
+
|
39 |
+
The app will then be available at http://127.0.0.1:7860
|
40 |
+
|
41 |
*Running Data Collection*
|
42 |
+
|
43 |
1. On your local repo that you pulled, create a copy of `config.py.example`,
|
44 |
just called `config.py`. Now, put keys from your AWS account in `config.py`.
|
45 |
These keys should be for an AWS account that has the
|
app.py
CHANGED
@@ -1,20 +1,21 @@
|
|
1 |
# Basic example for doing model-in-the-loop dynamic adversarial data collection
|
2 |
# using Gradio Blocks.
|
|
|
3 |
import os
|
|
|
4 |
import uuid
|
|
|
5 |
from urllib.parse import parse_qs
|
|
|
6 |
import gradio as gr
|
7 |
-
from huggingface_hub import Repository
|
8 |
from dotenv import load_dotenv
|
9 |
-
from
|
10 |
-
import
|
11 |
-
from utils import force_git_push
|
12 |
-
import threading
|
13 |
-
|
14 |
-
from langchain.prompts import load_prompt
|
15 |
-
from langchain import LLMChain, PromptTemplate
|
16 |
-
from langchain.llms import HuggingFaceHub
|
17 |
from langchain.chains.conversation.memory import ConversationBufferMemory
|
|
|
|
|
|
|
|
|
18 |
|
19 |
# These variables are for storing the mturk HITs in a Hugging Face dataset.
|
20 |
if Path(".env").is_file():
|
@@ -22,10 +23,8 @@ if Path(".env").is_file():
|
|
22 |
DATASET_REPO_URL = os.getenv("DATASET_REPO_URL")
|
23 |
FORCE_PUSH = os.getenv("FORCE_PUSH")
|
24 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
25 |
-
|
26 |
PROMPT_TEMPLATES = Path("prompt_templates")
|
27 |
-
|
28 |
-
# Set env variable for langchain
|
29 |
os.environ["HUGGINGFACEHUB_API_TOKEN"] = HF_TOKEN
|
30 |
|
31 |
DATA_FILENAME = "data.jsonl"
|
@@ -59,26 +58,45 @@ asynchronous_push(f_stop)
|
|
59 |
# Now let's run the app!
|
60 |
prompt = load_prompt(PROMPT_TEMPLATES / "openai_chatgpt.json")
|
61 |
|
62 |
-
chatbot_1 =
|
63 |
llm=HuggingFaceHub(
|
64 |
repo_id="google/flan-t5-xl",
|
65 |
-
model_kwargs={"temperature": 1
|
66 |
),
|
67 |
prompt=prompt,
|
68 |
verbose=False,
|
69 |
memory=ConversationBufferMemory(ai_prefix="Assistant"),
|
70 |
)
|
71 |
|
72 |
-
chatbot_2 =
|
73 |
llm=HuggingFaceHub(
|
74 |
repo_id="bigscience/bloom",
|
75 |
-
model_kwargs={"temperature":
|
76 |
),
|
77 |
prompt=prompt,
|
78 |
verbose=False,
|
79 |
memory=ConversationBufferMemory(ai_prefix="Assistant"),
|
80 |
)
|
81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
demo = gr.Blocks()
|
84 |
|
@@ -94,6 +112,8 @@ with demo:
|
|
94 |
"generated_responses": [],
|
95 |
"response_1": "",
|
96 |
"response_2": "",
|
|
|
|
|
97 |
}
|
98 |
state = gr.JSON(state_dict, visible=False)
|
99 |
|
@@ -104,21 +124,27 @@ with demo:
|
|
104 |
|
105 |
# Generate model prediction
|
106 |
def _predict(txt, state):
|
107 |
-
|
108 |
response_1 = chatbot_1.predict(input=txt)
|
109 |
response_2 = chatbot_2.predict(input=txt)
|
|
|
|
|
|
|
|
|
110 |
response2model[response_1] = chatbot_1.llm.repo_id
|
111 |
response2model[response_2] = chatbot_2.llm.repo_id
|
|
|
|
|
112 |
|
113 |
state["cnt"] += 1
|
114 |
|
115 |
new_state_md = f"Inputs remaining in HIT: {state['cnt']}/{TOTAL_CNT}"
|
116 |
|
117 |
-
state["data"].append({"cnt": state["cnt"], "text": txt, "response_1": response_1, "response_2": response_2, "response2model": response2model})
|
118 |
state["past_user_inputs"].append(txt)
|
119 |
|
120 |
past_conversation_string = "<br />".join(["<br />".join(["π: " + user_input, "π€: " + model_response]) for user_input, model_response in zip(state["past_user_inputs"], state["generated_responses"] + [""])])
|
121 |
-
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True, choices=[response_1, response_2], interactive=True, value=response_1), gr.update(value=past_conversation_string), state, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), new_state_md, dummy
|
122 |
|
123 |
def _select_response(selected_response, state, dummy):
|
124 |
done = state["cnt"] == TOTAL_CNT
|
|
|
1 |
# Basic example for doing model-in-the-loop dynamic adversarial data collection
|
2 |
# using Gradio Blocks.
|
3 |
+
import json
|
4 |
import os
|
5 |
+
import threading
|
6 |
import uuid
|
7 |
+
from pathlib import Path
|
8 |
from urllib.parse import parse_qs
|
9 |
+
|
10 |
import gradio as gr
|
|
|
11 |
from dotenv import load_dotenv
|
12 |
+
from huggingface_hub import Repository
|
13 |
+
from langchain import ConversationChain
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
from langchain.chains.conversation.memory import ConversationBufferMemory
|
15 |
+
from langchain.llms import HuggingFaceHub
|
16 |
+
from langchain.prompts import load_prompt
|
17 |
+
|
18 |
+
from utils import force_git_push
|
19 |
|
20 |
# These variables are for storing the mturk HITs in a Hugging Face dataset.
|
21 |
if Path(".env").is_file():
|
|
|
23 |
DATASET_REPO_URL = os.getenv("DATASET_REPO_URL")
|
24 |
FORCE_PUSH = os.getenv("FORCE_PUSH")
|
25 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
|
26 |
PROMPT_TEMPLATES = Path("prompt_templates")
|
27 |
+
# Set env variable for langchain to communicate with Hugging Face Hub
|
|
|
28 |
os.environ["HUGGINGFACEHUB_API_TOKEN"] = HF_TOKEN
|
29 |
|
30 |
DATA_FILENAME = "data.jsonl"
|
|
|
58 |
# Now let's run the app!
|
59 |
prompt = load_prompt(PROMPT_TEMPLATES / "openai_chatgpt.json")
|
60 |
|
61 |
+
chatbot_1 = ConversationChain(
|
62 |
llm=HuggingFaceHub(
|
63 |
repo_id="google/flan-t5-xl",
|
64 |
+
model_kwargs={"temperature": 1}
|
65 |
),
|
66 |
prompt=prompt,
|
67 |
verbose=False,
|
68 |
memory=ConversationBufferMemory(ai_prefix="Assistant"),
|
69 |
)
|
70 |
|
71 |
+
chatbot_2 = ConversationChain(
|
72 |
llm=HuggingFaceHub(
|
73 |
repo_id="bigscience/bloom",
|
74 |
+
model_kwargs={"temperature": 0.7}
|
75 |
),
|
76 |
prompt=prompt,
|
77 |
verbose=False,
|
78 |
memory=ConversationBufferMemory(ai_prefix="Assistant"),
|
79 |
)
|
80 |
|
81 |
+
chatbot_3 = ConversationChain(
|
82 |
+
llm=HuggingFaceHub(
|
83 |
+
repo_id="bigscience/T0_3B",
|
84 |
+
model_kwargs={"temperature": 1}
|
85 |
+
),
|
86 |
+
prompt=prompt,
|
87 |
+
verbose=False,
|
88 |
+
memory=ConversationBufferMemory(ai_prefix="Assistant"),
|
89 |
+
)
|
90 |
+
|
91 |
+
chatbot_4 = ConversationChain(
|
92 |
+
llm=HuggingFaceHub(
|
93 |
+
repo_id="EleutherAI/gpt-j-6B",
|
94 |
+
model_kwargs={"temperature": 1}
|
95 |
+
),
|
96 |
+
prompt=prompt,
|
97 |
+
verbose=False,
|
98 |
+
memory=ConversationBufferMemory(ai_prefix="Assistant"),
|
99 |
+
)
|
100 |
|
101 |
demo = gr.Blocks()
|
102 |
|
|
|
112 |
"generated_responses": [],
|
113 |
"response_1": "",
|
114 |
"response_2": "",
|
115 |
+
"response_3": "",
|
116 |
+
"response_4": "",
|
117 |
}
|
118 |
state = gr.JSON(state_dict, visible=False)
|
119 |
|
|
|
124 |
|
125 |
# Generate model prediction
|
126 |
def _predict(txt, state):
|
127 |
+
# TODO: parallelize this!
|
128 |
response_1 = chatbot_1.predict(input=txt)
|
129 |
response_2 = chatbot_2.predict(input=txt)
|
130 |
+
response_3 = chatbot_3.predict(input=txt)
|
131 |
+
response_4 = chatbot_4.predict(input=txt)
|
132 |
+
|
133 |
+
response2model = {}
|
134 |
response2model[response_1] = chatbot_1.llm.repo_id
|
135 |
response2model[response_2] = chatbot_2.llm.repo_id
|
136 |
+
response2model[response_3] = chatbot_3.llm.repo_id
|
137 |
+
response2model[response_4] = chatbot_4.llm.repo_id
|
138 |
|
139 |
state["cnt"] += 1
|
140 |
|
141 |
new_state_md = f"Inputs remaining in HIT: {state['cnt']}/{TOTAL_CNT}"
|
142 |
|
143 |
+
state["data"].append({"cnt": state["cnt"], "text": txt, "response_1": response_1, "response_2": response_2, "response_3": response_3, "response_4": response_4,"response2model": response2model})
|
144 |
state["past_user_inputs"].append(txt)
|
145 |
|
146 |
past_conversation_string = "<br />".join(["<br />".join(["π: " + user_input, "π€: " + model_response]) for user_input, model_response in zip(state["past_user_inputs"], state["generated_responses"] + [""])])
|
147 |
+
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True, choices=[response_1, response_2, response_3, response_4], interactive=True, value=response_1), gr.update(value=past_conversation_string), state, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), new_state_md, dummy
|
148 |
|
149 |
def _select_response(selected_response, state, dummy):
|
150 |
done = state["cnt"] == TOTAL_CNT
|